

Emission Test Report Particulate and Metals Emissions

Behr Iron & Metal - Rockford, Illinois Site ID No.: P201030AB

January 19, 2016

APPENDIX C

PARTICULATE MATTER AND TRACE METAL EMISSIONS TEST REPORT NORTHWEST BAGHOUSE

Mostardi Plat Environmental Services

This Page Left Blank

Particulate Matter and Trace Metal Emissions Test Report

For: RK & Associates, Inc.
At: Behr Iron & Metal
Rockford Facility
Northwest Baghouse System
Rockford, Illinois
Report No. M154005A
October 6, 2015

Particulate Matter and Trace Metal Emissions Test Report

For: RK & Associates, Inc.
At: Behr Iron & Metal
Rockford Facility
Northwest Baghouse System
Rockford, Illinois
October 6, 2015

Report Submittal Date January 19, 2016

© Copyright 2016 All rights reserved in Mostardi Platt

Report No. M154005A

TABLE OF CONTENTS

1.0 EXECUTIVE SUMMARY	1
2.0 TEST METHODOLOGY Method 1 Traverse Point Determination Method 2 Volumetric Flowrate Determination Method 3A/3 Oxygen (O2)/Carbon Dioxide (CO2) Determination Method 5 Filterable Particulate Matter Determination Method 29 Trace Metals Determination Method 9 Visual Emission Determination	
3.0 TEST RESULT SUMMARIES	6
4.0 CERTIFICATION	18
APPENDICES Appendix A - Test Section Diagram	20
Appendix C - Calculation Nomenclature and Formulas	29
Appendix E - Reference Method Test Data (Computerized Sheets)	78
Appendix F - Field Data Greets	132
Appendix I - Visible Emissions Data and Reader Certification	

1.0 EXECUTIVE SUMMARY

MOSTARDI PLATT conducted a particulate matter and trace metals emissions test program for Behr I ron & Metal at their Rockford facility on the Northwest Baghouse system in Rockford, Illinois on October 6, 2015. This report summarizes the results of the test program and test methods used.

The test locations, test date, and test parameters are summarized below.

TEST INFORMATION								
Test Locations	Test Date	Test Parameters						
Foundry Sand Separator	October 6,	Filterable Particulate Matter (FPM), Antimony (Sb), Arsenic (As), Barium (Ba), Beryllium (Be), Cadmium (Cd), Chromium (Cr), Cobalt (Co), Copper (Cu), Lead (Pb), Manganese (Mn), Nickel (Ni), Selenium (Se), Silver (Ag), and Zinc (Zn)						
Northwest Baghouse Gas Cooler Inlet	2015	FPM, Sb, As, Ba, Be, Cd, Cr, Co, Cu, Pb, Mn, Ni, Se, Ag, and Zn						
Northwest Baghouse Outlet		FPM, Sb, As, Ba, Be, Cd, Cr, Co, Cu, Pb, Mn, Ni, Se, Ag, Zn, and Opacity						

The purpose of the test program was to determine FPM and metals emissions in the Northwest Baghouse. Selected results of the test program are summarized below. A complete summary of emission test results follows the narrative portion of this report.

TEST RESULTS SUMMARY							
Test	Test						
Location	Parameter	Emission Rate, lb/hr					
	FPM	4.359					
	Sb	0.000604					
	As	0.000031					
	Ва	0.000286					
	Be	< 0.000002					
	Cd	0.000031					
Foundry Sand Separator	Cr	0.0002					
	Co	0.0001					
	Cu	0.0580					
	Pb	0.0482					
	Mn	0.0018					
	Ni	0.0008					
	Se	< 0.00005					
	Ag	0.00003					
	Zn	0.0219					

TEST RESULTS SUMMARY									
Test	Test Test								
Location	Parameter	Emission Rate, lb/hr							
	FPM	0.429							
	Sb	0.001704							
	As	0.000875							
	Ва	< 0.000632							
	Be	< 0.000010							
	Cd	0.000061							
Northwest Baghouse Gas	Cr	0.0007							
Cooler Inlet	Со	0.0005							
	Cu	0.0106							
	Pb	0.0419							
	Mn	0.0007							
	Ni	0.0081							
	Se	< 0.0001							
	Ag	< 0.00002							
	Zn	0.0060							

Test Location	Test Parameter	Emission Rate, lb/hr				
	FPM	0.254				
	Sb	0.000494				
	As	0.000445				
	Ва	< 0.000145				
	Be	< 0.000006				
	Cd	0.000041				
Northwest Baghouse	Cr	0.0001				
Outlet	Co	0.0002				
	Cu	0.0061 0.0126				
	Pb					
	Mn	0.0003				
	Ni	0.0010				
	Se	< 0.0001				
	Ag	< 0.00001				
	Zn	0.0053				
	Opacity	0.00%				

The S tationary S ource Audit S ample P rogram audi t s ample w as obt ained f rom E RA and submitted for analysis to Maxxam Analytical. The results of the audit samples were compared to the assigned v alue by ERA and f ound t o b e ac ceptable. The a udit sample results and evaluation is appended to this report

The identifications of the individuals associated with the test program are summarized below.

TEST PERSONNEL INFORMATION							
Location	Address	Contact					
Test Coordinator	RK & Associates, Inc. 2S631 Route 59, Suite B Warrenville, Illinois 60555	Mr. John Pinion Associate Engineer (630) 393-9000 x 208 jpinion@rka-inc.com					
Test Facility	Behr Iron & Metal 1100 Seminary Street Rockford, Illinois 61104	Mr. Ron Coupar Environmental Manager (815) 987-2770 rcoupar@behrim.com					
Testing Company Representative	Mostardi Platt 888 Industrial Drive Elmhurst, Illinois 60126	Mr. Mark Peterson Project Manager (630) 993-2100 (phone) mpeterson@mp-mail.com					

The test crew consisted of Messrs. B. Schuler, B. Tarra, D. Kossack, J. Howe, K. Johnson, M. Karum, M. Lipinski, M. Platt, N. Colangelo, S. Cleary and M. Peterson of Mostardi Platt.

2.0 TEST METHODOLOGY

Emission testing was conducted following the methods specified in 40C FR60, Appendix A. A schematic of the test section diagrams are found in Appendix A and schematics of the sampling trains used are included in Appendix B. Calculation nomenclature and sample calculations are included in Appendix C. Laboratory analysis data are found in Appendix D. Copies of electronic data for each test run are included in Appendix E and field data sheets are found in Appendix F.

The following methodologies were used during the test program:

Method 1 Traverse Point Determination

Test measurement points were selected in accordance with Method 1. The characteristics of the measurement location are summarized below.

TEST POINT INFORMATION										
Test Location	Location Diameters									
Foundry Sand Separator	16 Inches	>0.5	>2.0	FPM, Sb, As,	24					
Northwest Baghouse Gas Cooler Inlet	33 Inches	>0.5	>2.0	Ba, Be, Cd, Cr, Co, Cu, Pb, Mn,	40					
Northwest Baghouse Outlet	33 Inches	>0.5	>2.0	Ni, Se, Ag, Zn	24					

Absence of cyclonic flow tests were performed prior to testing at each location and each location met the minimum criteria.

Method 2 Volumetric Flowrate Determination

Gas velocity was measured following Method 2, for purposes of calculating volumetric flow rate and particulate and trace metal emission rates on a lb/hr basis. An S-type pitot tube, differential pressure gauge, thermocouple and temperature readout were used to determine gas velocity at each sample point. All of the equipment used was calibrated in accordance with the specifications of the Method. Calibration data are presented in Appendix G.

Method 3A/3 Oxygen (O2)/Carbon Dioxide (CO2) Determination

Flue gas molecular weight was determined in accordance with Method 3A during the first test run. Servomex analyzers were used to determine stack gas oxygen and carbon dioxide content and, by difference, ni trogen content. All of the equipment used was calibrated in accordance with the specifications of the Method. Calibration data are presented in Appendix G and copies of the gas cylinder certifications are found in Appendix H. For all additional test runs the flue gas molecular weight was determined in accordance with Method 3. A Fyrite analyzer was used to determine stack gas oxygen and carbon dioxide content and, by difference, nitrogen content.

Method 5 Filterable Particulate Matter Determination

Flue g as filterable par ticulate m atter concentrations and e mission r ates w ere det ermined in accordance with Method 5. The probe and filter housing were maintained at a temperature of $248^{\circ}F$ +/- $25^{\circ}F$. An Environmental Supply Company, Inc. sampling train was used to sample flue gas at an isokinetic rate. Four impingers were utilized, the first two each contained 100 ml of 0.1N Nitric Peroxide (N_2O_2), the third remained empty, and the fourth contained approximately 200 grams of silica gel. The impingers were weighed prior to and after each test run in order to determine moisture content of the stack gas. A minimum of 60 dry standard cubic feet was sampled for each run.

Particulate matter in the sample probe was recovered utilizing acetone; three passes of the probe brush through the entire probe was performed, followed by a visual inspection of the acetone exiting the probe. The acetone solution exiting the probe was clear, and therefore the wash was considered complete. The nozzle was then removed from the probe and cleaned in a similar manner, utilizing an appropriately sized nozzle brush. The filter and filter housing were recovered in a clean area. The filter housing was washed a minimum of three times with acetone and inspected for cleanliness, and the filter was placed in its corresponding petri dish. The acetone wash and the filter were labeled and marked, then analyzed at the Mostardi Platt Laboratory by Mostardi Platt personnel in ac cordance with the Method. All sample dat a analysis, are found in Appendix E. All of the equipment used is calibrated in accordance with the specifications of the Method. Calibration data are presented in Appendix G.

Method 29 Trace Metals Determination

Flue gas metals concentrations and emission rates were determined in accordance with Method 29 in c onjunction with the M ethod 5 sampling. An Environmental Supply C ompany, Inc. sampling train was used to sample stack gas, in the manner specified in the Method. Analyses of the samples collected were conducted by Maxxam. Samples were analyzed for the following metals, using I nductively C oupled Argon Plasma emission spectroscopy (ICP): Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Cobalt, Copper, Lead, Manganese, Nickel, Selenium, Silver, and Zinc. All of the equipment used was calibrated in accordance with the specifications of the Method. Calibration data is presented in the Appendix G.

Method 9 Visual Emission Determination

Visible em issions were determined in accordance w ith M ethod 9. V isible em issions observations were conducted and r ecorded by M. P latt, who is a c ertified v isual em issions observer. A copy of M. Platt's certification is presented in the Appendix I.

3.0 TEST RESULT SUMMARIES

Client: Rk & Associates, Inc.

Facility: Behr Iron and Metal Rockford Facility

Test Location: Foundry Sand Seperator

Test Method: 5/29

rest Metriod. 3/29							
Source Condition Date	Normal 10/6/15	Normal 10/6/15	Normal 10/6/15				
Start Time	11:40	14:40	17:40				
End Time	13:52	16:52	19:51				
	Run 1	Run 2	Run 3	Average			
Stack C	onditions						
Average Gas Temperature, °F	67.2	66.5	50.3	61.3			
Flue Gas Moisture, percent by volume	1.2%	1.2%	1.3%	1.2%			
Average Flue Pressure, in. Hg	29.25	29.25	29.25	29.25			
Gas Sample Volume, dscf	97.410	101.603	86.208	95.074			
Average Gas Velocity, ft/sec	26.842	27.603	26.149	26.865			
Gas Volumetric Flow Rate, acfm	2,249	2,312	2,191	2,251			
Gas Volumetric Flow Rate, dscfm	2,176	2,241	2,187	2,201			
Gas Volumetric Flow Rate, scfm	2,202	2,267	2,216	2,228			
Average %CO ₂ by volume, dry basis	0.0	0.0	0.0	0.0			
Average %O ₂ by volume, dry basis	20.9	20.9	20.9	20.9			
Isokinetic Variance	99.4	100.7	93.5	97.9			
Filterable Particulate Matter (Method 5)							
grams collected	2.0658	1.3700	0.8877	1.4412			
grains/acf	0.3167	0.2016	0.1586	0.2256			
grains/dscf	0.3272	0.2081	0.1589	0.2314			

lb/hr

6.103

3.997

4.359

2.978

Facility: Behr Iron and Metal Rockford Facility

Test Location: Foundry Sand Seperator

Source Condition Date Start Time End Time		Normal 10/6/15 11:40 13:52 Run 1		Normal 10/6/15 14:40 16:52 Run 2		Normal 10/6/15 17:40 19:51 Run 3		Average
	Sta	ck Condition	<u>าร</u>					
Average Gas Temperature, °F		67.2		66.5		50.3		61.3
Flue Gas Moisture, percent by volume		1.2%		1.2%		1.3%		1.2%
Average Flue Pressure, in. Hg		29.25		29.25		29.25		29.25
Gas Sample Volume, dscf		97.410		101.603		86.208		95.074
Average Gas Velocity, ft/sec		26.842		27.603		26.149		26.865
Gas Volumetric Flow Rate, acfm		2,249		2,312		2,191		2,251
Gas Volumetric Flow Rate, dscfm		2,176		2,241		2,187		2,201
Gas Volumetric Flow Rate, scfm		2,202		2,267		2,216		2,228
Average %CO ₂ by volume, dry basis		0.0		0.0		0.0		0.0
Average %O ₂ by volume, dry basis		20.9		20.9		20.9		20.9
Isokinetic Variance		99.4		100.7		93.5		97.9
Antii	moi	ny (Sb) Emis	ssio	ns				
ug of sample collected		241.00		219.35		137.00		199.12
ppb		17.25		15.05		11.08		14.46
ug/dscm		87.37		76.24		56.12		73.24
lb/hr		0.000712		0.000640		0.000460		0.000604
Ars	eni	c (As) Emiss	sion	 S				
ug of sample collected		12.00		11.80		7.30		10.37
ppb		1.40		1.32		0.96		1.22
ug/dscm		4.35		4.10		2.99		3.81
lb/hr		0.000035		0.000034		0.000024		0.000031
Bar	iun	n (Ba) Emiss	sion					
ug of sample collected		109.90		105.50		67.30		94.23
ppb		6.97		6.42		4.83		6.07
ug/dscm		39.84		36.67		27.57		34.69
lb/hr		0.000325		0.000308		0.000226		0.000286
Bery	lliu	ım (Be) Emis	ssio					
ug of sample collected	≤	0.55	≤	0.55	≤	0.55	≤	0.55
ppb		0.53	≤	0.51	≤	0.60	≤	0.55
ug/dscm		0.20	≤	0.19	≤	0.23	≤	0.21
lb/hr	≤	0.000002	≤	0.000002	≤	0.000002	≤	0.000002
Cadr	niu	ım (Cd) Emis						
ug of sample collected		10.85		9.44		9.95		10.08
ppb		0.84		0.70		0.87		0.81
ug/dscm		3.93		3.28		4.08		3.76
g,co								

Facility: Behr Iron and Metal Rockford Facility

Test Location: Foundry Sand Seperator

Source Condition Date	Normal 10/6/15	Normal 10/6/15	Normal 10/6/15	
Start Time	11:40	14:40	17:40	
End Time	13:52	16:52	19:51	
	Run 1	Run 2	Run 3	Average
St	ack Conditions	3		
Average Gas Temperature, °F	67.2	66.5	50.3	61.3
Flue Gas Moisture, percent by volume	1.2%	1.2%	1.3%	1.2%
Average Flue Pressure, in. Hg	29.25	29.25	29.25	29.25
Gas Sample Volume, dscf	97.410	101.603	86.208	95.074
Average Gas Velocity, ft/sec	26.842	27.603	26.149	26.865
Gas Volumetric Flow Rate, acfm	2,249	2,312	2,191	2,251
Gas Volumetric Flow Rate, dscfm	2,176	2,241	2,187	2,201
Gas Volumetric Flow Rate, scfm	2,202	2,267	2,216	2,228
Average %CO ₂ by volume, dry basis	0.0	0.0	0.0	0.0
Average %O ₂ by volume, dry basis	20.9	20.9	20.9	20.9
Isokinetic Variance	99.4	100.7	93.5	97.9
Chrom	nium (Cr) Emiss			
ug of sample collected	73.75	52.05	42.39	56.06
ppb	12.36	8.36	8.03	9.58
ug/dscm	26.74	18.09	17.36	20.73
lb/hr	0.0002	0.0002	0.0001	0.0002
	alt (Co) Emissio			
ug of sample collected	57.96	40.03	24.38	40.79
ppb	8.57	5.68	4.07	6.11
ug/dscm	21.01	13.91	9.99	14.97
lb/hr	0.0002	0.0001	0.0001	0.0001
	oer (Cu) Emissi			
ug of sample collected	30602.20	17002.80	10105.30	19236.77
ppb	4195.89	2235.06	1565.58	2665.51
ug/dscm	11094.41	5909.75	4139.58	7047.91
lb/hr	0.0904	0.0496	0.0339	0.0580
	d (Pb) Emissio		10500.04	15001.00
ug of sample collected	20901.22	16302.75	10500.84	15901.60
ppb	879.00	657.32	499.00	678.44
ug/dscm	7577.45	5666.43	4301.61	5848.50
lb/hr	0.0618	0.0476	0.0352	0.0482
	nese (Mn) Emis		350.00	
ug of sample collected	825.59	581.19	359.99	588.92
ppb ug/dsem	130.94	88.37	64.51 147.47	94.61
ug/dscm lb/hr	299.31	202.01	147.47	216.26
ID/III	0.0024	0.0017	0.0012	0.0018

Client: Rk & Associates, Inc. Facility:

Behr Iron and Metal Rockford Facility

Test Location: Foundry Sand Seperator

Source Condition		Normal		Normal		Normal		
Date		10/6/15		10/6/15		10/6/15		
Start Time		11:40		14:40		17:40		
End Time		13:52		16:52		19:51		
		Run 1		Run 2		Run 3		Average
	Stac	k Conditio	ns					
Average Gas Temperature, °F		67.2		66.5		50.3		61.3
Flue Gas Moisture, percent by volume		1.2%		1.2%		1.3%		1.2%
Average Flue Pressure, in. Hg		29.25		29.25		29.25		29.25
Gas Sample Volume, dscf		97.410		101.603		86.208		95.074
Average Gas Velocity, ft/sec		26.842		27.603		26.149		26.865
Gas Volumetric Flow Rate, acfm		2,249		2,312		2,191		2,251
Gas Volumetric Flow Rate, dscfm		2,176		2,241		2,187		2,201
Gas Volumetric Flow Rate, scfm		2,202		2,267		2,216		2,228
Average %CO ₂ by volume, dry basis		0.0		0.0		0.0		0.0
Average %O ₂ by volume, dry basis		20.9		20.9		20.9		20.9
Isokinetic Variance		99.4		100.7		93.5		97.9
Nic	ckel	(Ni) Emiss	ions					
ug of sample collected		332.80		229.84		176.46		246.37
ppb		49.39		32.70		29.59		37.23
ug/dscm		120.65		79.89		72.29		90.94
lb/hr		0.0010		0.0007		0.0006		0.0008
	niu	m (Se) Emi	ssion					
ug of sample collected	≤	5.65	≤	17.70	≤	5.50	≤	9.62
ppb	≤	0.62	≤	1.87	≤	0.69	≤	1.06
ug/dscm	≤	2.05	≤	6.15	≤	2.25	≤	3.48
lb/hr	≤	0.00002	≤	0.0001	≤	0.00002	≤	0.00005
	ver	(Ag) Emiss	ions					
ug of sample collected		11.96		8.12		9.60		9.89
ppb		0.97		0.63		0.88		0.82
ug/dscm		4.34		2.82		3.93		3.70
lb/hr		0.00004		0.00002		0.00003		0.00003
	inc ((Zn) Emissi	ons					
ug of sample collected		8991.90		7762.40		4913.10		7222.47
ppb		1198.56		991.98		739.98		976.84
ug/dscm		3259.89		2698.02		2012.62		2656.84
lb/hr		0.0266		0.0226		0.0165		0.0219

Facility: Behr Iron and Metal Rockford Facility
Test Location: Northwest Baghouse Gas Cooler Inlet

163t Welliod. 3/23				
Source Condition Date	Normal 10/6/15	Normal 10/6/15	Normal 10/6/15	
Start Time	11:40	14:40	17:35	
End Time	13:52	16:52	19:51	
	Run 1	Run 2	Run 3	Average
Stack C	onditions			
Average Gas Temperature, °F	94.2	93.6	101.4	97.5
Flue Gas Moisture, percent by volume	1.4%	1.3%	1.7%	1.5%
Average Flue Pressure, in. Hg	29.35	29.35	29.35	29.35
Gas Sample Volume, dscf	76.881	90.097	91.445	90.771
Average Gas Velocity, ft/sec	40.889	41.193	43.201	42.197
Gas Volumetric Flow Rate, acfm	14,572	14,680	15,396	15,038
Gas Volumetric Flow Rate, dscfm	13,432	13,563	13,971	13,767
Gas Volumetric Flow Rate, scfm	13,621	13,736	14,206	13,971
Average %CO ₂ by volume, dry basis	0.1	0.1	0.1	0.1
Average %O ₂ by volume, dry basis	20.8	20.8	20.8	20.8
Isokinetic Variance	94.9	103.0	101.5	102.3
Filterable Particula	ate Matter	(Method 5)		
grams collected	0.0415	0.0287	0.0142	0.0214
grains/acf	0.0077	0.0045	0.0022	0.0034
grains/dscf	0.0083	0.0049	0.0024	0.0037
lb/hr	0.959	0.571	0.287	0.429

Facility: Behr Iron and Metal Rockford Facility
Test Location: Northwest Baghouse Gas Cooler Inlet

Source Condition Date Start Time End Time	Sta	Normal 10/6/15 11:40 13:52 Run 1 ck Condition	ne	Normal 10/6/15 14:40 16:52 Run 2		Normal 10/6/15 17:35 19:51 Run 3		Average
	ota		113	00.0		404.4		
Average Gas Temperature, °F		94.2		93.6		101.4		96.4
Flue Gas Moisture, percent by volume		1.4%		1.3%		1.7%		1.5%
Average Flue Pressure, in. Hg		29.35		29.35		29.35		29.35
Gas Sample Volume, dscf		76.881		90.097		91.445		86.141
Average Gas Velocity, ft/sec		40.889		41.193		43.201		41.761
Gas Volumetric Flow Rate, acfm		14,572		14,680		15,396		14,883
Gas Volumetric Flow Rate, dscfm		13,432		13,563		13,971		13,655
Gas Volumetric Flow Rate, scfm		13,621		13,736		14,206		13,854
Average %CO ₂ by volume, dry basis		0.1		0.1		0.1		0.1
Average %O ₂ by volume, dry basis		20.8		20.8		20.8		20.8
Isokinetic Variance		94.9	!-	103.0		101.5		99.8
	mo	ny (Sb) Emi:	SSIO			22.00		77.40
ug of sample collected		150.00 13.60		49.20 3.81		33.00 2.52		77.40 6.64
ppb ug/dscm		68.90		3.61 19.28		2.52 12.74		33.64
_								
lb/hr	i	0.003466	.:	0.000980		0.000667		0.001704
	eni	c (As) Emiss 19.12	sion	87.40		21.87		42.80
ug of sample collected		2.82		10.99		2.71		5.51
ppb				34.26		2.71 8.45		17.16
ug/dscm lb/hr		8.78 0.000442		0.001740		0.000442		
	riun	0.000442 n (Ba) Emis	cion			0.000442		0.000875
ug of sample collected	iui	54.40	<u>SiOII</u> ≤	16.70		15.20	≤	28.77
ppb		4.37	≤	1.15		1.03	≤	2.18
ug/dscm		24.99		6.55		5.87	≤	12.47
lb/hr		0.001257		0.000333		0.000307		0.000632
	/Him	m (Be) Emi				0.000001		0.000032
ug of sample collected		0.55	<u> </u>	0.55	≤	0.25	≤	0.45
ppb		0.67	_ ≤	0.58	_ ≤	0.26	- ≤	0.50
ug/dscm	_ ≤	0.25	_ ≤	0.22	_ ≤	0.10	- ≤	0.19
lb/hr		0.000013		0.000011	- ≤	0.000005	- ≤	0.000010
		ım (Cd) Emi			_	2.00000	_	3.000010
ug of sample collected		1.51		4.21		3.16		2.96
ppb		0.15		0.35		0.26		0.25
ug/dscm		0.69		1.65		1.22		1.19
lb/hr		0.000035		0.000084		0.000064		0.000061
		•						

Facility: Behr Iron and Metal Rockford Facility
Test Location: Northwest Baghouse Gas Cooler Inlet

estiviethod: 5/29				
Source Condition	Normal	Normal	Normal	
Date	10/6/15	10/6/15	10/6/15	
Start Time	11:40	14:40	17:35	
End Time	13:52	16:52	19:51	
	Run 1	Run 2	Run 3	Average
Sta	ack Conditions	5		
Average Gas Temperature, °F	94.2	93.6	101.4	96.4
Flue Gas Moisture, percent by volume	1.4%	1.3%	1.7%	1.5%
Average Flue Pressure, in. Hg	29.35	29.35	29.35	29.35
Gas Sample Volume, dscf	76.881	90.097	91.445	86.141
Average Gas Velocity, ft/sec	40.889	41.193	43.201	41.761
Gas Volumetric Flow Rate, acfm	14,572	14,680	15,396	14,883
Gas Volumetric Flow Rate, dscfm	13,432	13,563	13,971	13,655
Gas Volumetric Flow Rate, scfm	13,621	13,736	14,206	13,854
Average %CO ₂ by volume, dry basis	0.1	0.1	0.1	0.1
Average %O ₂ by volume, dry basis	20.8	20.8	20.8	20.8
Isokinetic Variance	94.9	103.0	101.5	99.8
Chrom	ium (Cr) Emiss	sions		
ug of sample collected	46.22	33.35	19.71	33.09
ppb	9.82	6.04	3.52	6.46
ug/dscm	21.23	13.07	7.61	13.97
lb/hr	0.0011	0.0007	0.0004	0.0007
Coba	ılt (Co) Emissio	ons		
ug of sample collected	44.86	21.05	11.78	25.90
ppb	8.41	3.37	1.86	4.54
ug/dscm	20.61	8.25	4.55	11.14
lb/hr	0.0010	0.0004	0.0002	0.0005
Сорр	er (Cu) Emissi	ons		
ug of sample collected	1044.10	231.90	157.80	477.93
ppb	181.38	34.38	23.05	79.60
ug/dscm	479.60	90.90	60.94	210.48
lb/hr	0.0241	0.0046	0.0032	0.0106
Lea	d (Pb) Emissio	ns		
ug of sample collected	4271.74	810.67	536.71	1873.04
ppb	227.62	36.86	24.04	96.17
ug/dscm	1962.19	317.75	207.27	829.07
lb/hr	0.0987	0.0161	0.0108	0.0419
· · ·	nese (Mn) Emis			
ug of sample collected	65.61	17.87	12.01	31.83
ppb	13.18	3.06	2.03	6.092
ug/dscm	30.14	7.00	4.64	13.93
lb/hr	0.0015	0.0004	0.0002	0.0007

Facility: Behr Iron and Metal Rockford Facility
Test Location: Northwest Baghouse Gas Cooler Inlet

Source Condition Date		Normal 10/6/15		Normal 10/6/15		Normal 10/6/15				
Start Time		11:40		14:40		17:35				
End Time		13:52		16:52		19:51				
		Run 1		Run 2		Run 3		Average		
Stack Conditions										
Average Gas Temperature, °F		94.2		93.6		101.4		96.4		
Flue Gas Moisture, percent by volume		1.4%		1.3%		1.7%		1.5%		
Average Flue Pressure, in. Hg		29.35		29.35		29.35		29.35		
Gas Sample Volume, dscf		76.881		90.097		91.445		86.141		
Average Gas Velocity, ft/sec		40.889		41.193		43.201		41.761		
Gas Volumetric Flow Rate, acfm		14,572		14,680		15,396		14,883		
Gas Volumetric Flow Rate, dscfm		13,432		13,563		13,971		13,655		
Gas Volumetric Flow Rate, scfm		13,621		13,736		14,206		13,854		
Average %CO ₂ by volume, dry basis		0.1		0.1		0.1		0.1		
Average %O ₂ by volume, dry basis		20.8		20.8		20.8		20.8		
Isokinetic Variance		94.9		103.0		101.5		99.8		
Ni	cke	(Ni) Emiss	ions							
ug of sample collected		466.46		469.58		202.95		379.66		
ppb		87.72		75.35		32.09		65.05		
ug/dscm		214.26		184.06		78.38		158.90		
lb/hr		0.0108		0.0094		0.0041		0.0081		
		m (Se) Emi	oission							
ug of sample collected	≤	5.72	≤	5.50	≤	3.05	≤	4.76		
ppb		0.80	≤	0.66	≤	0.36	≤	0.61		
ug/dscm		2.63	≤	2.16	≤	1.18	≤	1.99		
lb/hr	≤	0.0001	≤	0.0001	≤	0.0001	≤	0.0001		
		(Ag) Emiss	sions							
ug of sample collected		1.10	≤	1.10	≤	0.50	≤	0.90		
ppb		0.11	≤	0.10	≤	0.04	≤	0.084		
ug/dscm		0.51	≤	0.43	≤	0.19	≤	0.38		
lb/hr		0.00003	≤	0.00002	≤	0.00001	≤	0.00002		
	inc	(Zn) Emissi	ons							
ug of sample collected		547.90		158.30		110.60		272.27		
ppb		92.53		22.81		15.70		43.68		
ug/dscm		251.67		62.05		42.71		118.81		
lb/hr		0.0127		0.0032		0.0022		0.0060		

Facility: Behr Iron and Metal Rockford Facility
Test Location: Northwest Baghouse Outlet Stack

rest Method: 5/29				
Source Condition Date	Normal 10/6/15	Normal 10/6/15	Normal 10/6/15	
Start Time	11:40	14:40	17:35	
End Time	13:52	16:52	19:51	
	Run 1	Run 2	Run 3	Average
Stack C	onditions			
Average Gas Temperature, °F	89.6	89.9	92.2	90.6
Flue Gas Moisture, percent by volume	1.5%	1.5%	1.7%	1.6%
Average Flue Pressure, in. Hg	29.25	29.25	29.25	29.25
Gas Sample Volume, dscf	84.471	82.329	87.274	84.691
Average Gas Velocity, ft/sec	43.866	42.516	44.844	43.742
Gas Volumetric Flow Rate, acfm	15,633	15,152	15,981	15,589
Gas Volumetric Flow Rate, dscfm	14,459	14,013	14,690	14,387
Gas Volumetric Flow Rate, scfm	14,684	14,224	14,940	14,616
Average %CO ₂ by volume, dry basis	0.0	0.0	0.0	0.0
Average %O ₂ by volume, dry basis	20.9	20.9	20.9	20.9
Isokinetic Variance	100.3	100.9	102.0	101.1
Filterable Particula	ate Matter ((Method 5)		
grams collected	0.0111	0.0113	0.0116	0.0113
grains/acf	0.0019	0.0020	0.0019	0.0019
grains/dscf	0.0020	0.0021	0.0021	0.0021
lb/hr	0.251	0.254	0.258	0.254

Facility: Behr Iron and Metal Rockford Facility
Test Location: Northwest Baghouse Outlet Stack

Source Condition Date Start Time End Time		Normal 10/6/15 11:40 13:52 Run 1		Normal 10/6/15 14:40 16:52 Run 2		Normal 10/6/15 17:35 19:51 Run 3		Average
	3tac	ck Condition	าร					
Average Gas Temperature, °F		89.6		89.9		92.2		90.6
Flue Gas Moisture, percent by volume		1.5%		1.5%		1.7%		1.6%
Average Flue Pressure, in. Hg		29.25		29.25		29.25		29.25
Gas Sample Volume, dscf		84.471		82.329		87.274		84.691
Average Gas Velocity, ft/sec		43.866		42.516		44.844		43.742
Gas Volumetric Flow Rate, acfm		15,633		15,152		15,981		15,589
Gas Volumetric Flow Rate, dscfm		14,459		14,013		14,690		14,387
Gas Volumetric Flow Rate, scfm		14,684		14,224		14,940		14,616
Average %CO ₂ by volume, dry basis		0.0		0.0		0.0		0.0
Average %O ₂ by volume, dry basis		20.9		20.9		20.9		20.9
Isokinetic Variance		100.3		100.9		102.0		101.1
Antir	nor	ny (Sb) Emis	ssio	ns				
ug of sample collected		37.60		14.40		13.80		21.93
ppb		3.10		1.22		1.10		1.81
ug/dscm		15.72		6.18		5.58		9.16
lb/hr		0.000851		0.000324		0.000307		0.000494
Ars	eni	c (As) Emiss	sion					
ug of sample collected		34.37		13.47		11.35		19.73
ppb		4.61		1.85		1.47		2.65
ug/dscm		14.37		5.78		4.59		8.25
lb/hr		0.000778		0.000303		0.000253		0.000445
Bar	iun	n (Ba) Emiss	sion					
ug of sample collected		9.00		5.70	≤	4.60	≤	6.43
ppb		0.66		0.43	≤	0.33	≤	0.47
ug/dscm		3.76		2.44	≤	1.86	≤	2.69
lb/hr		0.000204		0.000128	≤	0.000102	≤	0.000145
Bery	lliu	m (Be) Emis	ssio					
ug of sample collected		0.25	≤	0.25	≤	0.25	≤	0.25
ppb		0.28	≤	0.29	≤	0.27	≤	0.28
ug/dscm	≤	0.10	≤	0.11	≤	0.10	≤	0.10
lb/hr	≤	0.000006	≤	0.000006	≤	0.000006	≤	0.000006
Cadr	niu	m (Cd) Emis	ssio					
		1.06		1.62		2.79		1.83
ug of sample collected								
ug of sample collected ppb		0.10		0.15		0.24		0.16
-				0.15 0.70		0.24 1.13		0.16 0.76

Facility: Behr Iron and Metal Rockford Facility
Test Location: Northwest Baghouse Outlet Stack

estiviethod: 3/29				
Source Condition	Normal	Normal	Normal	
Date	10/6/15	10/6/15	10/6/15	
Start Time	11:40	14:40	17:35	
End Time	13:52	16:52	19:51	
	Run 1	Run 2	Run 3	Average
Sta	ack Conditions	3		
Average Gas Temperature, °F	89.6	89.9	92.2	90.6
Flue Gas Moisture, percent by volume	1.5%	1.5%	1.7%	1.6%
Average Flue Pressure, in. Hg	29.25	29.25	29.25	29.25
Gas Sample Volume, dscf	84.471	82.329	87.274	84.691
Average Gas Velocity, ft/sec	43.866	42.516	44.844	43.742
Gas Volumetric Flow Rate, acfm	15,633	15,152	15,981	15,589
Gas Volumetric Flow Rate, dscfm	14,459	14,013	14,690	14,387
Gas Volumetric Flow Rate, scfm	14,684	14,224	14,940	14,616
Average %CO ₂ by volume, dry basis	0.0	0.0	0.0	0.0
Average %O ₂ by volume, dry basis	20.9	20.9	20.9	20.9
Isokinetic Variance	100.3	100.9	102.0	101.1
Chrom	ium (Cr) Emiss	sions		
ug of sample collected	10.28	5.08	4.54	6.63
ppb	1.99	1.01	0.85	1.28
ug/dscm	4.30	2.18	1.84	2.77
lb/hr	0.0002	0.0001	0.0001	0.0001
Coba	alt (Co) Emissio	ons		
ug of sample collected	17.97	6.93	6.61	10.50
ppb	3.06	1.21	1.09	1.79
ug/dscm	7.51	2.97	2.68	4.39
lb/hr	0.0004	0.0002	0.0001	0.0002
Сорр	er (Cu) Emissi	ons		
ug of sample collected	349.60	186.00	284.30	273.30
ppb	55.28	30.17	43.51	42.99
ug/dscm	146.16	79.78	115.04	113.66
lb/hr	0.0079	0.0042	0.0063	0.0061
Lea	d (Pb) Emissio			
ug of sample collected	796.80	409.53	470.17	558.83
ppb	38.64	20.38	22.07	27.03
ug/dscm	333.12	175.67	190.25	233.01
lb/hr	0.0180	0.0092	0.0105	0.0126
	nese (Mn) Emis			
ug of sample collected	15.54	7.74	9.59	10.96
ppb	2.84	1.45	1.70	2.00
ug/dscm	6.50	3.32	3.88	4.57
lb/hr	0.0004	0.0002	0.0002	0.0003

Facility: Behr Iron and Metal Rockford Facility
Test Location: Northwest Baghouse Outlet Stack

Source Condition Date Start Time End Time		Normal 10/6/15 11:40 13:52 Run 1		Normal 10/6/15 14:40 16:52 Run 2		Normal 10/6/15 17:35 19:51 Run 3		Average		
Stack Conditions										
Average Gas Temperature, °F		89.6		89.9		92.2		90.6		
Flue Gas Moisture, percent by volume		1.5%		1.5%		1.7%		1.6%		
Average Flue Pressure, in. Hg		29.25		29.25		29.25		29.25		
Gas Sample Volume, dscf		84.471		82.329		87.274		84.691		
Average Gas Velocity, ft/sec		43.866		42.516		44.844		43.742		
Gas Volumetric Flow Rate, acfm		15,633		15,152		15,981		15,589		
Gas Volumetric Flow Rate, dscfm		14,459		14,013		14,690		14,387		
Gas Volumetric Flow Rate, scfm		14,684		14,224		14,940		14,616		
Average %CO ₂ by volume, dry basis		0.0		0.0		0.0		0.0		
Average %O ₂ by volume, dry basis		20.9		20.9		20.9		20.9		
Isokinetic Variance		100.3		100.9		102.0		101.1		
Ni	cke	l (Ni) Emiss	ions							
ug of sample collected		72.04		29.98		29.21		43.74		
ppb		12.33		5.26		4.84		7.48		
ug/dscm		30.12		12.86		11.82		18.27		
lb/hr		0.0016		0.0007		0.0007		0.0010		
		m (Se) Emi	ssio	าร						
ug of sample collected	≤	2.50	≤	2.50	≤	2.50	≤	2.50		
ppb		0.32	≤	0.33	≤	0.31	≤	0.32		
ug/dscm		1.05	≤	1.07	≤	1.01	≤	1.04		
lb/hr		0.0001	≤	0.0001	≤	0.0001	≤	0.0001		
		(Ag) Emiss	ions							
ug of sample collected		0.73	≤	0.53	≤	0.50	≤	0.59		
ppb		0.07	≤	0.05	≤	0.05	≤	0.055		
ug/dscm		0.31	≤	0.23	≤	0.20	≤	0.25		
lb/hr		0.00002	≤	0.00001	≤	0.00001	≤	0.00001		
	inc	(Zn) Emissi	ons							
ug of sample collected		357.70		173.20		174.80		235.23		
ppb		54.98		27.32		26.01		36.10		
ug/dscm		149.54		74.29		70.73		98.19		
lb/hr		0.0081		0.0039		0.0039		0.0053		

4.0 CERTIFICATION

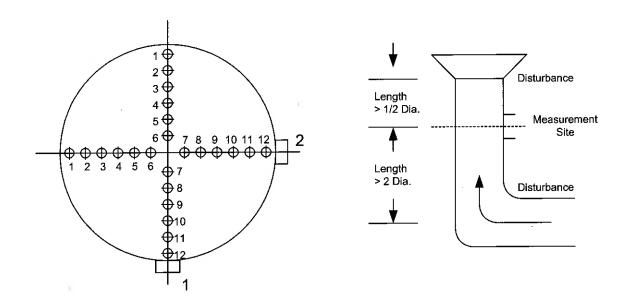
MOSTARDI PLATT is pleased to have been of service to RK & Associates, Inc. If you have any questions regarding this test report, please do not hesitate to contact us at 630-993-2100.

CERTIFICATION

MOSTARDI PLATT

As pr oject m anager, I hereby c ertify t hat this t est r eport r epresents a t rue and a ccurate summary of emissions test results and the methodologies employed to obtain those results, and the test program was performed in accordance with the methods specified in this test report.

Mark E. Peterson


Program Manager

A guality Assurance

APPENDICES

Appendix A - Test Section Diagrams

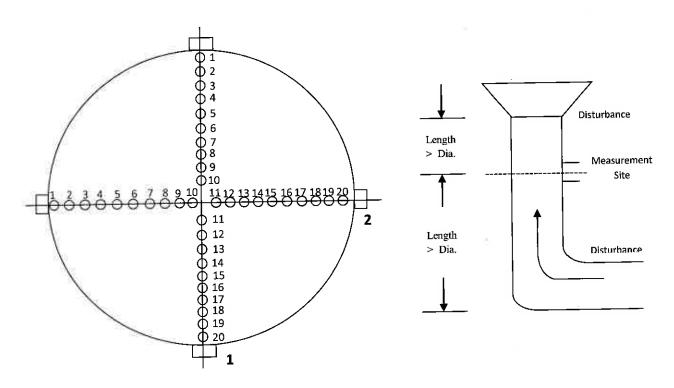
EQUAL AREA TRAVERSE FOR ROUND DUCTS

Job: Behr Iron & Metal

Date: October 6, 2015

Test Location: Foundry Sand Separator

Duct Diameter: 16"


Duct Area: 1.396

No. Points Across Diameter: 12

No. of Ports: 2

Port Length: Hole in Duct

EQUAL AREA TRAVERSE FOR ROUND DUCTS

Job: Behr Iron & Metal

Date: October 6, 2015

Test Location: Northwest Baghouse Gas

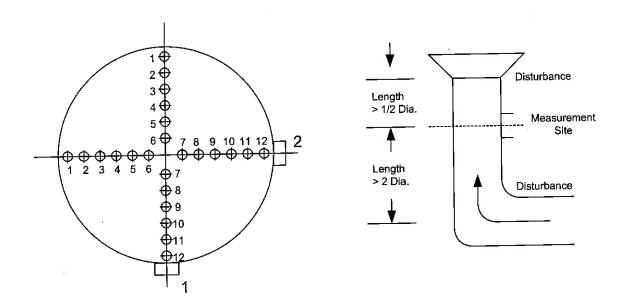
Cooler Inlet

Stack Diameter (ft.): 33"

Stack Area (sq. ft.): 5.940

No. Points Across

Diameter: 20


No. of Ports Sampled: 2

Total No. of Points: 40

Port Length

(inches): 6"

EQUAL AREA TRAVERSE FOR ROUND DUCTS

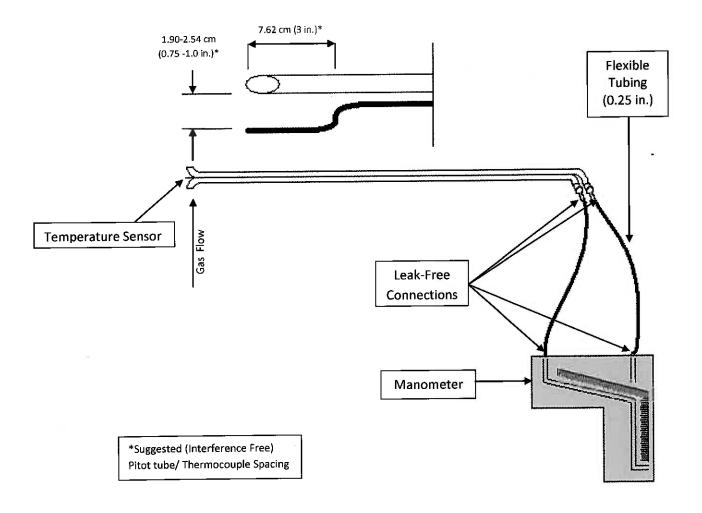
Job: Behr Iron & Metal

Date: October 6, 2015

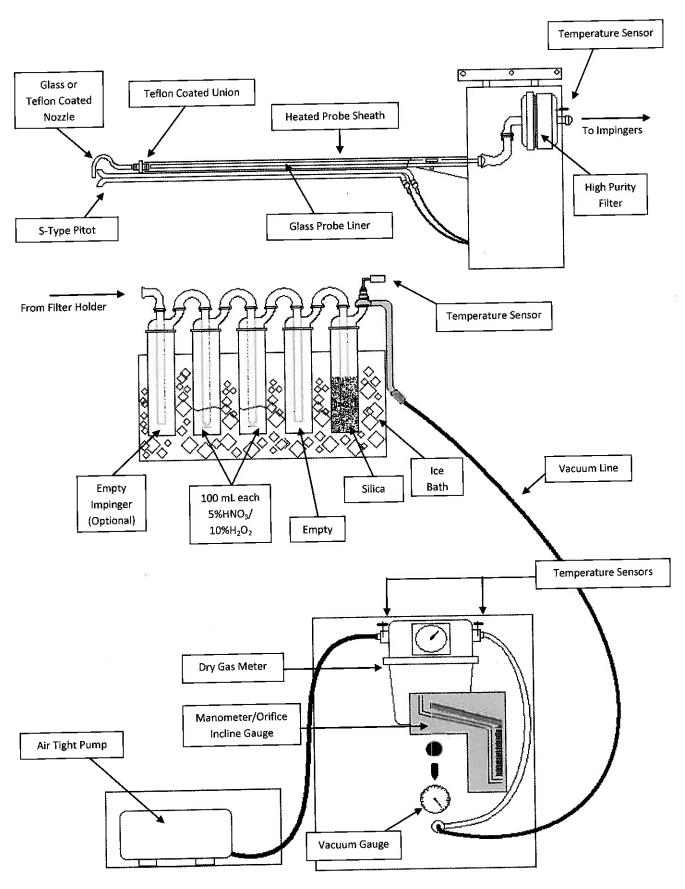
Test Location: Northwest Baghouse Outlet

Duct Diameter: 33"

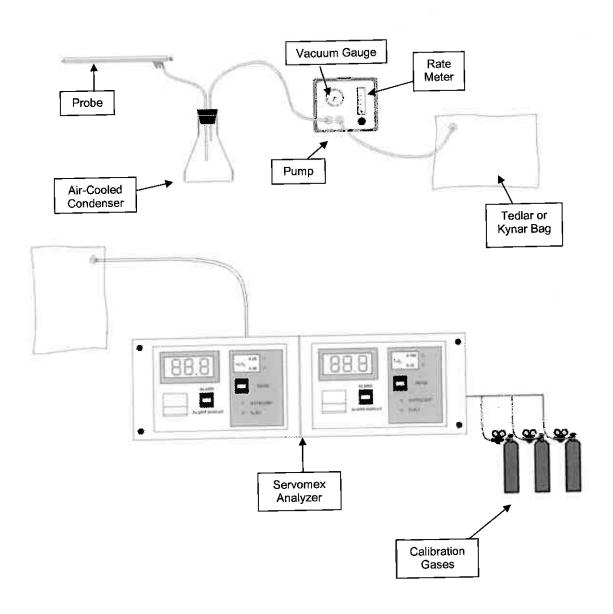
Duct Area: 5.940

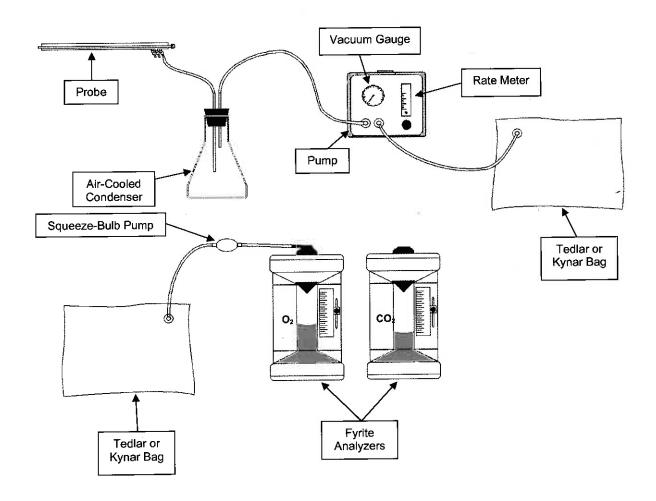

No. Points Across Diameter: 12

No. of Ports: 2


Port Length: 8"

Appendix B - Sample Train Diagrams


USEPA Method 2- Type S Pitot Tube Manometer Assembly


USEPA Method 29- Metals Sample Train Diagram

USEPA Method 3A - Integrated Oxygen/Carbon Dioxide Sample Train Diagram Utilizing Tedlar Gas Bag

USEPA Method 3 - Integrated Oxygen/Carbon Dioxide Sample Train Diagram Utilizing Fyrite Gas Analyzer

Appendix C - Calculation Nomenclature and Formulas

Client:

Rk & Associates, Inc.

Facility:

Behr Iron and Metal Rockford Facility

Test Location:

Foundry Sand Seperator

Run:

Date: Method: 10/6/2015 5/29

Source Condition:

Normal

Dry Molecular Weight

$$Md = 0.44 \times (\%CO_2) + 0.32 \times (\%O_2) + 0.28 \times \%N_2$$

$$%CO_2 = 0.0$$
 $%O_2 = 20.9$

$$%N_2 = 79.1$$

Wet Molecular Weight

$$Ms = Md \times (1-Bws) + (18.0 \times Bws)$$

Meter Volume at Standard Conditions

Volume of Water Vapor Condensed

$$Vw(std) = 0.$$

Moisture Content

Client:

Rk & Associates, Inc.

Facility:

Behr Iron and Metal Rockford Facility

Test Location:

Foundry Sand Seperator

Run:

Date:

10/6/2015

Method:

5/29

Source Condition:

Normal

Average Duct Velocity

$$Vs = 85.49 \times Cp \times Sqrt DP (avg) \times (Ts (avg)/(Ps \times Ms))^{1/2}$$

Volumetric Flow Rate (Actual Basis)

$$A = 1.396$$

Volumetric Flow Rate (Standard Basis)

$$Q = 2,249$$

Volumetric Flow Rate (Standard Dry Basis)

$$Qstd(dry) = Qstd \times (1-Bws)$$

Isokinetic Variation:

%ISO =
$$0.0945 \times Ts \times Vm(std)$$

Vs x θ x An x Ps x (1-Bws)

Rk & Associates, Inc.

Facility:

Behr Iron and Metal Rockford Facility

Test Location:

Foundry Sand Seperator

Run:

Date: Method: 10/6/2015

Source Condition:

5/29 Normal

PM Concentration:

This example represents the filterable fraction. For other fractions, use the obtained mn for that particulate fraction.

$$Co = \frac{m_n \times 15.43}{Vm(std)}$$

$$m_n(g) = 2.0658$$

$$Co = 0.3272$$
 gr/dscf

PM Emission Rate:

Emission Rate lb/hr =
$$\frac{\text{Co}}{7,000}$$
 x Qstd(dry) x 60

Rk & Associates, Inc.

Foundry Sand Seperator

Facility:

Behr Iron and Metal Rockford Facility

Test Location:

Run: Date:

Method:

10/6/2015

5/29

Source Condition:

Normal

Dry Molecular Weight

$$Md = 0.44 \times (\%CO_2) + 0.32 \times (\%O_2) + 0.28 \times \%N_2$$

$$%CO_2 = 0.0$$

$$%CO_2 = 0.0$$
 $%O_2 = 20.9$

$$%N_2 = 79.1$$

Wet Molecular Weight

$$Ms = Md x (1-Bws) + (18.0 x Bws)$$

Meter Volume at Standard Conditions

Volume of Water Vapor Condensed

Moisture Content

Average Duct Velocity

$$Vs = 85.49 \times Cp \times Sqrt DP (avg) \times (Ts (avg)/ (Ps \times Ms))^{1/2}$$

Bws = 0.012

Rk & Associates, Inc.

Facility:

Behr Iron and Metal Rockford Facility

Test Location:

Foundry Sand Seperator

Run: Date: 1

Method:

10/6/2015 5/29

Source Condition:

Normal

Volumetric Flow Rate (Actual Basis)

Volumetric Flow Rate (Standard Basis)

Volumetric Flow Rate (Standard Dry Basis)

$$Qstd(dry) = Qstd x (1-Bws)$$

Isokinetic Variation:

%ISO =
$$\frac{0.0945 \times Ts \times Vm(std)}{Vs \times \theta \times An \times Ps \times (1-Bws)}$$

%ISO = 99.4

$$Vm(std) = 97.410$$

 $\theta = 120$

Rk & Associates, Inc.

Facility:

Behr Iron and Metal Rockford Facility

Test Location:

Foundry Sand Seperator

Run: Date:

10/6/2015

Method: Source Condition: 5/29 Normal

Antimony (Sb) Concentration:

$$\mu$$
g/m³= μ g of Antimony (Sb)
Vm(std) x 0.02832 m³/ft³

$$\mu g/m^3 = ____87.37___$$

Antimony (Sb) Emission Rate:

Volumetric Flow Nomenclature

- A = Cross-sectional area of stack or duct, ft2
- Bws = Water vapor in gas stream, proportion by volume
 - Cp = Pitot tube coefficient, dimensionless
- Md = Dry molecular weight of gas, lb/lb-mole
- Ms = Molecular weight of gas, wet basis, lb/lb-mole
- Mw = Molecular weight of water, 18.0 lb/lb-mole
- Pbar = Barometric pressure at testing site, in. Hg
 - Pg = Static pressure of gas, in. Hg (in. H2O/13.6)
 - DH= Static pressure of gas, in.H2O
 - Ps = Absolute pressure of gas, in. Hg = Pbar + Pg
- Pstd = Standard absolute pressure, 29.92 in. Hg
- Acfm = Actual volumetric gas flow rate
- Scfm= Volumetric gas flow rate, corrected to standard conditions
- Dscfm = Standard volumetric flow rate, corrected to dry conditions
 - R = Ideal gas constant, 21.85 in. Hg-ft3/°R-lb-mole
 - Ts = Average stack gas temperature, °F
 - Tm = Average dry gas meter temperature, oF
 - Tstd = Standard absolute temperature, 528°R
 - vs = Gas velocity, ft/sec
- Vm(std)= Volume of gas sampled, corrected to standard conditions, scf
- Vw(std) = Volume of water vapor in gas sample, corrected to standard conditions, scf
 - VIc= Volume of liquid collected
 - Y = Dry gas meter calibration factor
 - Δp = Velocity head of gas, in. H2O
 - $K1 = 17.647 \,^{\circ}R/in$. Hg
 - %EA = Percent excess air
- %CO2 = Percent carbon dioxide by volume, dry basis
 - %O2 = Percent oxygen by volume, dry basis
 - %N2 = Percent nitrogen by volume, dry basis
- 0.264 = Ratio of O2 to N2 in air, v/v
- 0.28 = Molecular weight of N2 or CO, divided by 100
- 0.32 = Molecular weight of O2 divided by 100
- 0.44 = Molecular weight of CO2 divided by 100
- 13.6 = Specific gravity of mercury (Hg)

Volumetric Air Flow Calculations

$$Vm (std) = 17.647 \times Vm \times \left[\frac{\left(P_{bar} + \left[\frac{DH}{13.6} \right] \right)}{(460 + Tm)} \right] \times Y$$

$$Vw(std) = 0.0471 \times Vlc$$

$$Bws = \left[\frac{Vw (std)}{Vw (std) + Vm (std)}\right]$$

$$Md = (0.44 \times \%CO_2) + (0.32 \times \%O_2) + [0.28 \times (100 - \%CO_2 - \%O_2)]$$

$$Ms = Md \times (1 - Bws) + (18 \times Bws)$$

$$V_S = \sqrt{\frac{(Ts + 460)}{Ms \times Ps}} \times \sqrt{DP} \times Cp \times 85.49$$

 $Acfm = Vs \times Area (of stack or duct) \times 60$

$$Scfm = Acfm \times 17.647 \times \left[\frac{Ps}{(460 + Ts)} \right]$$

$$Scfh = Scfm \times 60 \frac{min}{hr}$$

$$Dscfm = Scfm \times (1 - Bws)$$

Isokinetic Nomenclature

```
A = Cross-sectional area of stack or duct, square feet
```

A_n = Cross-sectional area of nozzle, square feet

Bws = Water vapor in gas stream, by volume

C_a = Acetone blank residue concentration, g/g

Cacf = Concentration of particulate matter in gas stream at actual conditions, gr/acf

C_p = Pitot tube coefficient

C_s = Concentration of particulate matter in gas stream, dry basis, corrected to standard conditions, gr/dscf

IKV = Isokinetic sampling variance, must be 90.0 % ≤ IKV ≤ 110.0%

M_d = Dry molecular weight of gas, lb/lb-mole

M_s = Molecular weight of gas, wet basis, lb/lb-mole

M_w = Molecular weight of water, 18.0 lb/lb-mole

m_a = Mass of residue of acetone after evaporation, grams

P_{bar} = Barometric pressure at testing site, inches mercury

P_g = Static pressure of gas, inches mercury (inches water/13.6)

 $P_s = Absolute pressure of gas, inches mercury = P_{bar} + P_g$

P_{std} = Standard absolute pressure, 29.92 inches mercury

Q_{acfm} = Actual volumetric gas flow rate, acfm

Q_{sd} = Dry volumetric gas flow rate corrected to standard conditions, dscfh

R = Ideal gas constant, 21.85 inches mercury cubic foot/°R-lb-mole

T_m = Dry gas meter temperature, °R

T_s = Gas temperature, °R

T_{std} = Absolute temperature, 528°R

V_a = Volume of acetone blank, ml

V_{aw} = Volume of acetone used in wash, ml

W_a = Weight of residue in acetone wash, grams

m_n = Total amount of particulate matter collected, grams

V_{1c} = Total volume of liquid collected in impingers and silica gel, ml

V_m = Volume of gas sample as measured by dry gas meter, dcf

V_{m(std)} = Volume of gas sample measured by dry gas meter, corrected to standard conditions, dscf

v_s = Gas velocity, ft/sec

 $V_{w(std)}$ = Volume of water vapor in gas sample, corrected to standard conditions, scf

Y = Dry gas meter calibration factor

ΔH = Average pressure differential across the orifice meter, inches water

 $\Delta D = Velocity head of gas, inches water$

 ρ_a = Density of acetone, 0.7855 g/ml (average)

 $\rho_{\rm w}$ = Density of water, 0.002201 lb/ml

 θ = Total sampling time, minutes

 $K_1 = 17.647 \, ^{\circ}\text{R/in. Hg}$

 $K_2 = 0.04707 \text{ ft}^3/\text{ml}$

 $K_4 = 0.09450/100 = 0.000945$

 K_p = Pitot tube constant, $85.49 \frac{ft}{sec} \left[\frac{(lb/lb-mole)(in. Hg)}{(^{\circ}R)(in. H_2O)} \right]^{1/2}$

%EA = Percent excess air

%CO₂ = Percent carbon dioxide by volume, dry basis

%O₂ = Percent oxygen by volume, dry basis

%CO = Percent carbon monoxide by volume, dry basis

%N₂ = Percent nitrogen by volume, dry basis

 $0.264 = Ratio of O_2 to N_2 in air, v/v$

28 = Molecular weight of N2 or CO

32 = Molecular weight of O₂

44 = Molecular weight of CO₂

13.6 = Specific gravity of mercury (Hg)

Isokinetic Calculation Formulas

1.
$$V_{w(std)} = V_{lc} \left(\frac{\rho_w}{M_w} \right) \left(\frac{RT_{std}}{P_{std}} \right) = K_2 V_{lc}$$

$$2. \ V_{m(std)} = V_m Y \left(\frac{T_{std}}{T_m} \right) \left(\frac{(P_{bar} + (\frac{\Delta H}{13.6}))}{P_{std}} \right) = K_1 \ V_m \ Y \frac{(P_{bar} + (\frac{\Delta H}{13.6}))}{T_m}$$

3.
$$B_{ws} = \frac{V_{w(std)}}{(V_{m(std)} + V_{w(std)})}$$

4.
$$M_d = 0.44(\%CO_2) + 0.32(\%O_2) + 0.28(\%N_2)$$

5.
$$M_s = M_d(1-B_{ws}) + 18.0(B_{ws})$$

6.
$$C_a = \frac{m_a}{V_a \rho_a}$$

7.
$$W_a = C_a V_{aw} \rho_a$$

8.
$$C_{acf} = 15.43K_i \left(\frac{m_n P_s}{V_{w(std)} + V_{m(std)} T_s} \right)$$

9.
$$C_S = (15.43 \text{ grains/gram}) (m_n/V_{m(std)})$$

10.
$$v_s = K_p C_p \sqrt{\frac{\Delta P T_s}{P_s M_s}}$$

11.
$$Q_{acfm} = v_s A(60_{sec/min})$$

12.
$$Q_{sd} = (3600_{sec/hr})(1-B_{ws})v_s \left(\frac{T_{std}P_s}{T_sP_{std}}\right)A$$

13. E (emission rate, lbs/hr) =
$$Q_{std}(C_s/7000 \text{ grains/lb})$$

14.
$$IKV = \frac{T_s V_{m(std)} P_{std}}{T_{std} V_s \theta A_n P_s 60 (1 - B_{ws})} = K_4 \frac{T_s V_{m(std)}}{P_s V_s A_n \theta (1 - B_{ws})}$$

15. %EA =
$$\left(\frac{\%O_2 - (0.5\%CO)}{0.264\%N_2 - (\%O_2 - 0.5\%CO)}\right) \times 100$$

Trace Metal (Including Mercury) Sample Calculations

Concentration

$$\frac{\mu g}{m^3} = \frac{\mu g \text{ of trace metal}}{dscf \text{ volume sampled} \times 0.02832 \frac{m^3}{ft^3}}$$

Emission Rate

$$\frac{\mu g \text{ of sample} \times \frac{1 \times 10^{-6} grams}{\mu g}}{453.6 \text{ gr/lb}} = \text{lbs of trace metal}$$

$$\frac{lbs\ of\ trace\ metal}{V_m(std)sample} \times dscfm \times 60 \frac{min}{hr} = lbs\ of\ trace\ metal/hr$$

Appendix D - Laboratory Sample Analysis

Your Project #: M154005 Site Location: ROCKFORD

Attention:Data Reporting

Mostardi Platt 888 Industrial Rd Elmhurst, IL USA 60126-1121

Report Date: 2015/10/29

Report #: R3738352 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B5L0981 Received: 2015/10/16, 14:00

Sample Matrix: Stack Sampling Train # Samples Received: 27

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Metals B.H. in H2O2/HNO3 Imp.(6020A)	25	2015/10/27	2015/10/27	BRL SOP-00103 / BRL SOP 00102	- EPA M29/CARB 436 m
Metals F.H. in Filter + Rinses (6020A)	26	2015/10/28	2015/10/28	BRL SOP-00103/ BRL SOP- 00102	- EPA M29/CARB 436 m
Metals in Liquid by ICP/MS (6020A)	1	2015/10/27	2015/10/27	BRL SOP-00103	EPA 3010A/6020A m

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

Encryption Key

...Clayton Johnson

29 Oct 2015 14:40:59 -04:00

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Clayton Johnson, Project Manager - Air Toxics, Source Evaluation

Email: CJohnson@maxxam.ca

Phone# (905)817-5769

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Mostardi Platt

Client Project #: M154005 Site Location: ROCKFORD

EPA M29 METALS (FRONT & BACK SEPARATE)

Maxxam ID		BEC523		BEC552	BEC552	ì		
Sampling Date				2015/10/06	2015/10/06			
	UNITS	M5/29-BLANK	RDL	M5/29-NW BAGHOUSE-T1	M5/29-NW BAGHOUSE-T1 Lab-Dup	RDL	QC Batch	MDL
Front Half Antimony (Sb)	ug	<0.40	0.40	37.6	38.1	0.80	4248555	0.080
Front Half Arsenic (As)	ug	<0.40	0.40	33.8	33.5	0.80	4248555	0.080
Front Half Barium (Ba)	ug	5.7	3.0	12.9	12.8	6.0	4248555	0.80
Front Half Beryllium (Be)	ug	<0.10	0.10	<0.20	<0.20	0.20	4248555	0.040
Front Half Cadmium (Cd)	ug	<0.10	0.10	0.91	0.86	0.20	4248555	0.040
Front Half Chromium (Cr)	ug	1.33	0.30	11.0	10.5	0.60	4248555	0.10
Front Half Cobalt (Co)	ug	<0.10	0.10	17.7	17.4	0.20	4248555	0.020
Front Half Copper (Cu)	ug	<2.0	2.0	346	339	4.0	4248555	0.20
Front Half Lead (Pb)	ug	0.94	0.20	795	781	0.40	4248555	0.040
Front Half Manganese (Mn)	ug	1.41	0.75	16.7	16.2	1.5	4248555	0.10
Front Half Nickel (Ni)	ug	<0.50	0.50	71.6	70.6	1.0	4248555	0.20
Front Half Selenium (Se)	ug	<1.0	1.0	<2.0	<2.0	2.0	4248555	0.50
Front Half Silver (Ag)	ug	<0.20	0.20	<0.40	<0.40	0.40	4248555	0.040
Front Half Zinc (Zn)	ug	<5.0	5.0	348	344	10	4248555	1.0
Back Half Antimony (Sb)	ug	<0.20	0.20	<0.20	<0.20	0.20	4246778	0.040
Back Half Arsenic (As)	ug	<0.20	0.20	0.57	0.57	0.20	4246778	0.040
Back Half Barium (Ba)	ug	<1.5	1.5	1.8	1.8	1.5	4246778	0.040
Back Half Beryllium (Be)	ug	<0.050	0.050	<0.050	<0.050	0.050	4246778	0.050
Back Half Cadmium (Cd)	ug	0.128	0.050	0.281	0.279	0.050	4246778	0.030
Back Half Chromium (Cr)	ug	0.62	0.15	1.23	1.23	0.15	4246778	0.070
Back Half Cobalt (Co)	ug	<0.050	0.050	0.272	0.273	0.050	4246778	0.010
Back Half Copper (Cu)	ug	<2.0	2.0	3.6	3.5	2.0	4246778	1.6
Back Half Lead (Pb)	ug	0.50	0.10	3.24	3.29	0.10	4246778	0.040
Back Half Manganese (Mn)	ug	0.61	0.25	0.86	0.86	0.25	4246778	0.060
Back Half Nickel (Ni)	ug	0.49	0.25	0.93	0.94	0.25	4246778	0.060
Back Half Selenium (Se)	ug	<0.50	0.50	<0.50	<0.50	0.50	4246778	0.20
Back Half Silver (Ag)	ug	<0.10	0.10	0.33	0.33	0.10	4246778	0.020
Back Half Zinc (Zn)	ug	<2.5	2.5	9.7	9.8	2.5	4246778	0.60

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Mostardi Platt

Client Project #: M154005 Site Location: ROCKFORD

EPA M29 METALS (FRONT & BACK SEPARATE)

	BEC553	BEC555		BEC556			
	2015/10/06	2015/10/06		2015/10/06			
UNITS	M5/29-NW BAGHOUSE-T2	M5/29-NW BAGHOUSE-T3	RDL	M5/29- BAGHOUSE SAND SEPARATOR-T1	RDL	QC Batch	MDL
ug	14.4	13.8	0.80	241	2.0	4248555	0.080
ug	13.0	11.0	0.80	12.0	2.0	4248555	0.080
ug	9.6	8.8	6.0	113	15	4248555	0.80
ug	<0.20	<0.20	0.20	<0.50	0.50	4248555	0.040
ug	0.47	0.56	0.20	10.7	0.50	4248555	0.040
ug	5.98	5.58	0.60	73.9	1.5	4248555	0.10
ug	6.74	6.25	0.20	57.7	0.50	4248555	0.020
ug	183	278	4.0	30600	40	4248555	0.20
ug	408	469	0.40	20900	4.0	4248555	0.040
ug	8.7	10.6	1.5	826	3.8	4248555	0.10
ug	29.3	28.7	1.0	332	2.5	4248555	0.20
ug	<2.0	<2.0	2.0	<5.0	5.0	4248555	0.50
ug	<0.40	<0.40	0.40	11.8	1.0	4248555	0.040
ug	169	171	10	8980	25	4248555	1.0
ug	<0.20	<0.20	0.20	<0.20	0.20	4246778	0.040
ug	0.47	0.35	0.20	<0.20	0.20	4246778	0.040
ug	1.8	<1.5	1.5	2.6	1.5	4246778	0.040
ug	<0.050	<0.050	0.050	<0.050	0.050	4246778	0.050
ug	1.28	2.36	0.050	0.275	0.050	4246778	0.030
ug	1.05	0.91	0.15	1.80	0.15	4246778	0.070
ug	0.185	0.363	0.050	0.264	0.050	4246778	0.010
ug	3.0	6.3	2.0	2.2	2.0	4246778	1.6
ug	2.97	2.61	0.10	2.66	0.10	4246778	0.040
ug	1.06	1.01	0.25	/s 1.61	0.25	4246778	0.060
ug	1.17	1.00	0.25	1.29	0.25	4246778	0.060
uġ	<0.50	<0.50	0.50	0.65	0.50	4246778	0.20
ug	0.13	<0.10	0.10	0.16	0.10	4246778	0.020
ug	4.2	3.8	2.5	11.9	2.5	4246778	0.60
	Ug U	UNITS M5/29-NW BAGHOUSE-T2 Ug 14.4 Ug 13.0 Ug 9.6 Ug 0.47 Ug 5.98 Ug 6.74 Ug 183 Ug 408 Ug 408 Ug 29.3 Ug 29.3 Ug <0.40 Ug 169 Ug 0.47 Ug 1.8 Ug 0.47 Ug 1.8 Ug 1.8 Ug 0.47 Ug 1.8 Ug 0.185 Ug 0.185 Ug 0.185 Ug 0.185 Ug 0.185 Ug 0.185 Ug 0.197 Ug 1.06 Ug 1.17 Ug <0.50 Ug 0.13	UNITS M5/29-NW BAGHOUSE-T2 M5/29-NW BAGHOUSE-T3 UNITS M5/29-NW BAGHOUSE-T2 UNITS M5/29-NW BAGHOUSE-T3 UNITS M5/29-NW BAGHOUSE-T2 UNITS M5/	UNITS M5/29-NW BAGHOUSE-T2 M5/29-NW BAGHOUSE-T3 RDL ug 14.4 13.8 0.80 ug 13.0 11.0 0.80 ug 9.6 8.8 6.0 ug 0.47 0.56 0.20 ug 5.98 5.58 0.60 ug 6.74 6.25 0.20 ug 408 469 0.40 ug 8.7 10.6 1.5 ug 29.3 28.7 1.0 ug 4.040 <0.40	UNITS M5/29-NW BAGHOUSE-T2 M5/29-NW BAGHOUSE-T2 M5/29-NW BAGHOUSE-T3 RDL M5/29-BAGHOUSE SAND SEPARATOR-T1 Ug 14.4 13.8 0.80 241 ug 13.0 11.0 0.80 12.0 ug 9.6 8.8 6.0 113 ug 0.47 0.56 0.20 10.7 ug 5.98 5.58 0.60 73.9 ug 6.74 6.25 0.20 57.7 ug 183 278 4.0 30600 ug 408 469 0.40 20900 ug 8.7 10.6 1.5 826 ug 29.3 28.7 1.0 332 ug <0.40	UNITS M5/29-NW BAGHOUSE-T2 M5/29-NW BAGHOUSE-T3 RDL M5/29-BAGHOUSE SAND SAND SAND SEND SEND SEND SAND SEND SEND SEND SEND SEND SEND SEND SE	UNITS M5/29-NW BAGHOUSE-T2 M5/29-NW BAGHOUSE-T2 M5/29-NW BAGHOUSE-T3 RDL M5/29-SACHOUSE SAND SEPARATOR-T1 RDL QC Batch SEND SEPARATOR-T1 ug 14.4 13.8 0.80 241 2.0 4248555 ug 13.0 11.0 0.80 12.0 2.0 4248555 ug 9.6 8.8 6.0 113 15 4248555 ug 0.47 0.56 0.20 10.7 0.50 4248555 ug 5.98 5.58 0.60 73.9 1.5 4248555 ug 6.74 6.25 0.20 57.7 0.50 4248555 ug 408 469 0.40 30600 40 4248555 ug 408 469 0.40 20900 4.0 4248555 ug 29.3 28.7 1.0 332 2.5 4248555 ug 0.40 <0.40

QC Batch = Quality Control Batch

Mostardi Platt

Client Project #: M154005 Site Location: ROCKFORD

EPA M29 METALS (FRONT & BACK SEPARATE)

Maxxam ID		BEC557	BEC558		BEC559	BEC560			
Sampling Date		2015/10/06	2015/10/06		2015/10/06	2015/10/06			
	UNITS	M5/29- BAGHOUSE SAND SEPARATOR-T2	M5/29- BAGHOUSE SAND SEPARATOR-T3	RDL	M5/29- BAGHOUSE GAS COOLER-T1	M5/29- BAGHOUSE GAS COOLER-T2	RDL	QC Batch	MDL
Front Half Antimony (Sb)	ug	219	137	2.0	150	49.2	2.0	4248555	0.080
Front Half Arsenic (As)	ug	11.8	7.3	2.0	18.1	53.4	2.0	4248555	0.080
Front Half Barium (Ba)	ug	109	73	15	· 57	<15	15	4248555	0.80
Front Half Beryllium (Be)	ug	<0.50	<0.50	0.50	<0.50	<0.50	0.50	4248555	0.040
Front Half Cadmium (Cd)	ug	9.03	7.59	0.50	1.17	1.32	0.50	4248555	0.040
Front Half Chromium (Cr)	ug	- 53.0	43.4	1.5	47.3	33.7	1.5	4248555	0.10
Front Half Cobalt (Co)	ug	39.8	24.2	0.50	44.6	20.7	0.50	4248555	0.020
Front Half Copper (Cu)	ug	17000	10100	40	1040	225	10	4248555	0.20
Front Half Lead (Pb)	ug	16300	10500	4.0	4270	807	1.0	4248555	0.040
Front Half Manganese (Mn)	ug	582	361	3.8	66.5	18.6	3.8	4248555	0.10
Front Half Nickel (Ni)	ug	229	176	2.5	466	468	2.5	4248555	0.20
Front Half Selenium (Se)	ug	<5.0	<5.0	5.0	<5.0	<5.0	5.0	42 4 8555	0.50
Front Half Silver (Ag)	ug	8.0	9.6	1.0	<1.0	<1.0	1.0	4248555	0.040
Front Half Zinc (Zn)	ug	7740	4910	25	541	137	25	4248555	1.0
Back Half Antimony (Sb)	ug	0.35	<0.20	0.20	<0.20	<0.20	0.20	4246778	0.040
Back Half Arsenic (As)	ug	<0.20	<0.20	0.20	1.02	34.0	0.20	4246778	0.040
Back Half Barium (Ba)	ug	2.2	<1.5	1.5	3.1	1.7	1.5	4246778	0.040
Back Half Beryllium (Be)	ug	<0.050	<0.050	0.050	<0.050	<0.050	0.050	4246778	0.050
Back Half Cadmium (Cd)	ug	0.539	2.49	0.050	0.471	3.02	0.050	4246778	0.030
Back Half Chromium (Cr)	ug	1.00	0.94	0.15	0.87	1.60	0.15	4246778	0.070
Back Half Cobalt (Co)	ug	0.231	0.179	0.050	0.263	0.351	0.050	4246778	0.010
Back Half Copper (Cu)	ug	2.8	5.3	2.0	4.1	6.9	2.0	4246778	1.6
Back Half Lead (Pb)	ug	4.19	2.28	0.10	. 3.18	5.11	0.10	4246778	0.040
Back Half Manganese (Mn)	ug	1.21	1.01	0.25	1.13	1.29	0.25	4246778	0.060
Back Half Nickel (Ni)	ug	1.33	0.95	0.25	0.95	2.07	0.25	4246778	0.060
Back Half Selenium (Se)	ug	12.7	<0.50	0.50	0.72	<0.50	0.50	4246778	0.20
Back Half Silver (Ag)	ug	0.12	<0.10	0.10	0.10	<0.10	0.10	4246778	0.020
Back Half Zinc (Zn)	ug	22.4	3.1	2.5	6.9	21.3	2.5	4246778	0.60
RDL = Reportable Detection Li							•		

QC Batch = Quality Control Batch

Mostardi Platt

Client Project #: M154005 Site Location: ROCKFORD

EPA M29 METALS (FRONT & BACK SEPARATE)

Maxxam ID		BEC561	BEC562	BECS65	BEC566	BEC567			
Sampling Date		2015/10/06	2015/10/07	2015/10/07	2015/10/07	2015/10/07			
·	UNITS	M5/29- BAGHOUSE GAS COOLER-T3	M5/29-BLUE BAGHOUSE-T1	M5/29-BLUE BAGHOUSE-T2	M5/29-BLUE BAGHOUSE-T3	M5/29-BLUE BAGHOUSE-T4	RDL	QC Batch	MDL
Front Half Antimony (Sb)	ug	33.0	5.95	1.67	1.46	0.98	0.80	4248555	0.080
Front Half Arsenic (As)	ug	20.5	4.09	1.00	<0.80	<0.80	0.80	4248555	0.080
Front Half Barium (Ba)	ug	17.9	10.5	10.4	10.4	8.0	6.0	4248555	0.80
Front Half Beryllium (Be)	ug	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	4248555	0.040
Front Half Cadmium (Cd)	ug	0.48	0.31	1.69	0.91	<0.20	0.20	4248555	0.040
Front Half Chromium (Cr)	ug	20.5	8.30	7.65	6.69	3.85	0.60	4248555	0.10
Front Half Cobalt (Co)	ug	10.9	4.28	2.17	2.12	1.33	0.20	4248555	0.020
Front Half Copper (Cu)	ug	150	263	158	155	81.9	4.0	4248555	0.20
Front Half Lead (Pb)	ug	531	234	55.8	41.2	33.9	0.40	4248555	0.040
Front Half Manganese (Mn)	ug	12.9	22.8	10.6	10.8	6.8	1.5	4248555	0.10
Front Half Nickel (Ni)	ug	202	56.7	60.9	49.4	23.8	1.0	4248555	0.20
Front Half Selenium (Se)	ug	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	4248555	0.50
Front Half Silver (Ag)	ug	<0.40	<0.40	0.42	0.83	1.24	0.40	4248555	0.040
Front Half Zinc (Zn)	ug	107	234	99	91	58	10	4248555	1.0
Back Half Antimony (Sb)	ug	<0.20	0.31	<0.20	<0.20	<0.20	0.20	4246778	0.040
Back Half Arsenic (As)	ug	1.37	<0.20	<0.20	<0.20	<0.20	0.20	4246778	0.040
Back Half Barium (Ba)	ug	3.0	1.7	1.6	<1.5	1.8	1.5	4246778	0.040
Back Half Beryllium (Be)	ug	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	4246778	0.050
Back Half Cadmium (Cd)	ug	2.81	0.344	0.123	0.315	0.057	0.050	4246778	0.030
Back Half Chromium (Cr)	ug	1.16	1.23	1.43	1.02	2.31	0.15	4246778	0.070
Back Half Cobalt (Co)	ug	0.884	0.593	0.696	0.668	0.522	0.050	4246778	0.010
Back Half Copper (Cu)	ug	7.8	4.6	11.3	3.8	3.4	2.0	4246778	1.6
Back Half Lead (Pb)	ug	7.15	5.31	4.99	4.20	5.55	0.10	4246778	0.040
Back Half Manganese (Mn)	ug	1.13	1.59	1.36	1.09	1.44	0.25	4246778	0.060
Back Half Nickel (Ni)	ug	1.44	1.88	1.52	1.76	3.07	0.25	4246778	0.060
Back Half Selenium (Se)	ug	1.05	2.54	<0.50	0.91	<0.50	0.50	4246778	0.20
Back Half Silver (Ag)	ug	<0.10	0.49	<0.10	<0.10	<0.10	0.10	4246778	0.020
Back Half Zinc (Zn)	ug	3.6	8.8	4.0	4.6	<2.5	2.5	4246778	0.60
RDL = Reportable Detection L	imit								

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Mostardi Platt

Client Project #: M154005 Site Location: ROCKFORD

EPA M29 METALS (FRONT & BACK SEPARATE)

Maxxam ID		BEC572	BEC573	BEC574		BEC575		•	
Sampling Date		2015/10/07	2015/10/07	2015/10/07		2015/10/07			
	UNITS	M5/29-BAGHO USE SWEECO-T1	M5/29-BAGHO USE SWEECO-T2	M5/29-BAGHO USE SWEECO-T3	RDL	M5/29-BAGHO USE SWEECO-T4	RDL	QC Batch	MDL
Front Half Antimony (Sb)	ug	6.8	8.1	6.5	2.0	8.0	4.0	4248555	0.080
Front Half Arsenic (As)	ug	<2.0	<2.0	<2.0	2.0	<4.0	4.0	4248555	0.080
Front Half Barium (Ba)	ug .	63	. 33	41	15	36	30	4248555	0.80
Front Half Beryllium (Be)	ug	<0.50	<0.50	<0.50	0.50	<1.0	1.0	4248555	0.040
Front Half Cadmium (Cd)	ug	2.96	0.54	0.78	0.50	<1.0	1.0	4248555	0.040
Front Half Chromium (Cr)	ug	10.0	8.4	10.1	1.5	10.4	3.0	4248555	0.10
Front Half Cobalt (Co)	ug	4.28	6.86	6.57	0.50	5.6	1.0	4248555	0.020
Front Half Copper (Cu)	ug	604	2510	2340	10	2180	20	4248555	0.20
Front Half Lead (Pb)	ug	333	607	540	1.0	620	2.0	4248555	0.040
Front Half Manganese (Mn)	ug	29.5	5 1 .1	81.7	3.8	69.1	7.5	4248555	0.10
Front Half Nickel (Ni)	ug	48.8	38.6	59.7	2.5	48.7	5.0	4248555	0.20
Front Half Selenium (Se)	ug	<5.0	<5.0	<5.0	5.0	<10	10	4248555	0.50
Front Half Silver (Ag)	ug	<1.0	1.9	4.1	1.0	7.2	2.0	4248555	0.040
Front Half Zinc (Zn)	ug	530	912	797	25	890	50	4248555	1.0
Back Half Antimony (Sb)	ug	0.31	<0.20	<0.20	0.20	<0.20	0.20	4246778	0.040
Back Half Arsenic (As)	ug	<0.20	<0.20	<0.20	0.20	<0.20	0.20	4246778	0.040
Back Half Barium (Ba)	ug	2.0	2.1	<1.5	1.5	<1.5	1.5	4246778	0.040
Back Half Beryllium (Be)	ug	<0.050	<0.050	<0.050	0.050	<0.050	0.050	4246778	0.050
Back Half Cadmium (Cd)	ug	0.444	0.255	0.120	0.050	0.332	0.050	4246778	0.030
Back Half Chromium (Cr)	ug	9.43	6.54	7.91	0.15	8.30	0.15	4246778	0.070
Back Half Cobalt (Co)	ug	0.878	0.660	0.339	0.050	1.11	0.050	4246778	0.010
Back Half Copper (Cu)	ug	10.0	19.7	6.0	2.0	18.1	2.0	4246778	1.6
Back Half Lead (Pb)	ug	7.35	7.12	3.90	0.10	8.41	0.10	4246778	0.040
Back Half Manganese (Mn)	ug	3.05	2.42	1.49	0.25	1.80	0.25	4246778	0.060
Back Half Nickel (Ni)	ug	16.5	8.34	5.51	0.25	5.12	0.25	4246778	0.060
Back Half Selenium (Se)	ug	<0.50	<0.50	<0.50	0.50	<0.50	0.50	4246778	0.20
Back Half Silver (Ag)	ug	0.24	0.11	0.16	0.10	<0.10	0.10	4246778	0.020
Back Half Zinc (Zn)	ug	11.9	12.4	3.4	2.5	6.6	2.5	4246778	0.60

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Mostardi Platt

Client Project #: M154005 Site Location: ROCKFORD

EPA M29 METALS (FRONT & BACK SEPARATE)

Maxxam ID		BEC576	BEC577		BEC578	BEC578			
Sampling Date		2015/10/07	2015/10/07		2015/10/07	2015/10/07			
	UNITS	M5/29-BAGHO USE INLET-T1	M5/29-BAGHO USE INLET-T2	QC Batch	M5/29-BAGHO USE INLET-T3	M5/29- BAGHOUSE INLET-T3 Lab-Dup	RDL	QC Batch	MDL
Front Half Antimony (Sb)	ug	72.3	9.9	4248555	107	107	2.0	4248561	0.080
Front Half Arsenic (As)	ug .	17.6	7.5	4248555	8.1	8.0	2.0	4248561	0.080
Front Half Barium (Ba)	ug	<15	<15	4248555	17	17	15	4248561	0.80
Front Half Beryllium (Be)	ug	<0.50	<0.50	4248555	<0.50	<0.50	0.50	4248561	0.040
Front Half Cadmium (Cd)	ug	1.61	1.17	4248555	2.91	3.05	0.50	4248561	0.040
Front Half Chromium (Cr)	ug	9.2	4.5	4248555	4.7	4.9	1.5	4248561	0.10
Front Half Cobalt (Co)	ug	3.30	1.08	4248555	2.25	2.19	0.50	4248561	0.020
Front Half Copper (Cu)	ug	215	77	4248555	173	174	10	4248561	0.20
Front Half Lead (Pb)	ug	1780	769	4248555	1480	1480	1.0	4248561	0.040
Front Half Manganese (Mn)	ug	12.3	5.2	4248555	7.2	7.2	3.8	4248561	0.10
Front Half Nickel (Ni)	ug	31.7	11.8	4248555	17.7	18.1	2.5	4248561	0.20
Front Half Selenium (Se)	ug	<5.0	<5.0	4248555	<5.0	<5.0	5.0	4248561	0.50
Front Half Silver (Ag)	ug	<1.0	<1.0	4248555	<1.0	<1.0	1.0	4248561	0.040
Front Half Zinc (Zn)	ug	174	58	4248555	99	98	25	4248561	1.0
Back Half Antimony (Sb)	ug	<0.20	0.21	4246778	3.35	3.30	0.20	4246784	0.040
Back Half Arsenic (As)	ug	1.69	0.29	4246778	1.08	1.08	0.20	4246784	0.040
Back Half Barium (Ba)	ug	1.7	3.3	4246778	1.9	1.8	1.5	4246784	0.040
Back Half Beryllium (Be)	ug	<0.050	<0.050	4246778	<0.050	<0.050	0.050	4246784	0.050
Back Half Cadmium (Cd)	ug	0.264	0.260	4246778	0.135	0.123	0.050	4246784	0.030
Back Half Chromium (Cr)	ug	20.9	62.3	4246778	16.1	16.0	0.15	4246784	0.070
Back Half Cobalt (Co)	ug	0.642	1.34	4246778	0.585	0.581	0.050	4246784	0.010
Back Half Copper (Cu)	ug	17.6	18.2	4246778	6.9	6.7	2.0	4246784	1.6
Back Half Lead (Pb)	ug	10.9	13.8	4246778	6.21	6.21	0.10	4246784	0.040
Back Half Manganese (Mn)	ug	1.99	2.10	4246778	2.10	2.06	0.25	4246784	0.060
Back Half Nickel (Ni)	ug	12.9	16.4	4246778	6.66	6.51	0.25	4246784	0.060
Back Half Selenium (Se)	ug	0.55	0.71	4246778	0.53	0.53	0.50	4246784	0.20
Back Half Silver (Ag)	ug	0.11	1.15	4246778	0.24	0.24	0.10	4246784	0.020
Back Half Zinc (Zn)	ug	17.2	10.9	4246778	6.2	5. 6	2.5	4246784	0.60

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Mostardi Platt

Client Project #: M154005 Site Location: ROCKFORD

EPA M29 METALS (FRONT & BACK SEPARATE)

Maxxam ID		BEC579		BEC580	BEC581		BEC582			
Sampling Date		2015/10/07		2015/10/07	2015/10/07		2015/10/07			
	UNITS	M5/29-BAGHO USE INLET-T4	RDL	M5/29-TPU BAGHOUSE INLET-T1	M5/29-TPU BAGHOUSE INLET-T2	RDL	M5/29-TPU BAGHOUSE INLET-T3	RDL	QC Batch	MDL
Front Half Antimony (Sb)	ug	8.4	2.0	30	39	20	<20	20	4248561	0.080
Front Half Arsenic (As)	ug	4.3	2.0	<20	<20	20	<20	20	4248561	0.080
Front Half Barium (Ba)	ug	<15	15	<150	<150	150	<150	150	4248561	0.80
Front Half Beryllium (Be)	ug	<0.50	0.50	<5.0	<5.0	5.0	. <5.0	5.0	4248561	0.040
Front Half Cadmium (Cd)	ug	<0.50	0.50	6.5	<5.0	5.0	<5.0	5.0	4248561	0.040
Front Half Chromium (Cr)	ug	3.2	1.5	4370	2840	15	1710	15	4248561	0.10
Front Half Cobalt (Co)	ug	0.66	0.50	737	1450	5.0	897	5.0	4248561	0.020
Front Half Copper (Cu)	ug	77	10	66300 -	149000	100	481000 (1)	500	4248561	0.20
Front Half Lead (Pb)	ug .	1660	1.0	2930	1850	10	.1860	10	4248561	0.040
Front Half Manganese (Mn)	ug	<3.8	3.8	8860	3590	38	635	38	4248561	0.10
Front Half Nickel (Ni)	ug	10.1	2.5	46600	29900	25	21300	25	4248561	0.20
Front Half Selenium (Se)	ug	<5.0	5.0	<50	<50	50	<50	50	4248561	0.50
Front Half Silver (Ag)	ug	<1.0	1.0	<10	<10	10	18	10	4248561	0.040
Front Half Zinc (Zn)	ug	51	25	103000	29200	250	4380	250	4248561	1.0
Back Half Antimony (Sb)	ug	0.37	0.20	5.38	1.75	0.20	7.16	0.20	4246784	0.040
Back Half Arsenic (As)	ug	0.26	0.20	0.26	<0.20	0.20	0.36	0.20	4246784	0.040
Back Half Barium (Ba)	ug	3.3	1.5	<1.5	<1.5	1.5	3.8	1.5	4246784	0.040
Back Half Beryllium (Be)	ug	<0.050	0.050	<0.050	<0.050	0.050	<0.050	0.050	4246784	0.050
Back Half Cadmium (Cd)	ug	0.236	0.050	0.173	0.080	0.050	0.105	0.050	4246784	0.030
Back Half Chromium (Cr)	ug	7.76	0.15	1.68	1.35	0.15	2.23	0.15	4246784	0.070
Back Half Cobalt (Co)	ug	0.683	0.050	3.23	1.58	0.050	9.46	0.050	4246784	0.010
Back Half Copper (Cu)	ug	7.2	2.0	16.3	8.1	2.0	28.1	2.0	4246784	1.6
Back Half Lead (Pb)	ug	7.71	0.10	293	82.4	0.10	537	0.10	4246784	0.040
Back Half Manganese (Mn)	ug	2.03	0.25	1.22	1.25	0.25	3.46	0.25	4246784	0.060
Back Half Nickel (Ni)	ug	4.28	0.25	4.93	8.61	0.25	7.98	0.25	4246784	0.060
Back Half Selenium (Se)	ug	<0.50	0.50	8.92	52.5	0.50	1.20	0.50	4246784	0.20
Back Half Silver (Ag)	ug	0.16	0.10	<0.10	<0.10	0.10	<0.10	0.10	4246784	0.020
Back Half Zinc (Zn)	ug	4.2	2.5	17.7	19.5	2.5	11.8	2.5	4246784	0.60

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

(1) Extra 250x dilution reported

Mostardi Platt

Client Project #: M154005 Site Location: ROCKFORD

ELEMENTS BY ICP/MS (STACK SAMPLING TRAIN)

Maxxam ID		BEC632	BEC640			
Sampling Date						
	UNITS	AUDIT-092915O-1425	AUDIT-0929150-1426	RDL	QC Batch	MDL
Total Antimony (Sb)	ug/mL	N/A	1.78	0.010	4247327	N/A
Total Arsenic (As)	ug/mL	N/A	0.902	0.010	4247327	N/A
Total Barium (Ba)	ug/mL	N/A	1.10	0.060	4247327	N/A
Total Beryllium (Be)	ug/mL	N/A	1.45	0.0020	4247327	N/A
Total Cadmium (Cd)	ug/mL	N/A	1.17	0.0020	4247327	N/A
Total Chromium (Cr)	ug/mL	N/A	2.51	0.0050	4247327	N/A
Total Cobalt (Co)	ug/mL	N/A	1.96	0.0020	4247327	N/A
Total Copper (Cu)	ug/mL	N/A	1.29	0.010	4247327	N/A
Total Lead (Pb)	ug/mL	N/A	0.719	0.0050	4247327	N/A
Total Manganese (Mn)	ug/mL	N/A	0.343	0.010	4247327	N/A
Total Nickel (Ni)	ug/mL	N/A	0.372	0.010	4247327	N/A
Total Selenium (Se)	ug/mL	N/A	1.81	0.020	4247327	N/A
Total Silver (Ag)	ug/mL	N/A	0.878	0.0050	4247327	N/A
Total Zinc (Zn)	ug/mL	N/A	1.74	0.050	4247327	N/A
Front Half Antimony (Sb)	ug	32.2	N/A	0.40	4248561	0.080
Front Half Arsenic (As)	ug	26.4	N/A	0.40	4248561	0.080
Front Half Barium (Ba)	ug	31.4	N/A	3.0	4248561	0.80
Front Half Beryllium (Be)	ug	12.5	N/A	0.10	4248561	0.040
Front Half Cadmium (Cd)	ug	13.2	N/A	0.10	4248561	0.040
Front Half Chromium (Cr)	ug	21.0	N/A	0.30	4248561	0.10
Front Half Cobalt (Co)	ug	14.6	N/A	0.10	4248561	0.020
Front Half Copper (Cu)	ug	14.2	N/A	2.0	4248561	0.20
Front Half Lead (Pb)	ug	27.4	N/A	0.20	4248561	0.040
Front Half Manganese (Mn)	ug	14.5	N/A	0.75	4248561	0.10
Front Half Nickel (Ni)	ug	27.1	N/A	0.50	4248561	0.20
Front Half Selenium (Se)	ug	26.9	N/A	1.0	4248561	0.50
Front Half Silver (Ag)	ug	40.8	N/A	0.20	4248561	0.040
Front Half Zinc (Zn)	ug	29.0	N/A	5.0	4248561	1.0

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Mostardi Platt

Client Project #: M154005 Site Location: ROCKFORD

TEST SUMMARY

Maxxam ID: BEC523 Sample ID: M5/29-BLANK Collected: Shipped:

Matrix: Stack Sampling Train Received: 2015/10/16

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals B.H. in H2O2/HNO3 Imp.(6020A)	ICP1/MS	4246778	2015/10/27	2015/10/27	Nan Raykha
Metals F.H. in Filter + Rinses (6020A)	ICP1/MS	4248555	2015/10/28	2015/10/28	Nan Raykha

Maxxam ID: BEC552

Collected:

2015/10/06

M5/29-NW BAGHOUSE-T1 Sample ID: Matrix: Stack Sampling Train

Shipped:

Received: 2015/10/16

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Metals B.H. in H2O2/HNO3 Imp.(6020A)	ICP1/MS	4246778	2015/10/27	2015/10/27	Nan Raykha	
Metals F.H. in Filter + Rinses (6020A)	ICP1/MS	4248555	2015/10/28	2015/10/28	Nan Raykha	

Maxxam ID: BEC552 Dup

Collected: Shipped:

2015/10/06

Sample ID: M5/29-NW BAGHOUSE-T1
Matrix: Stack Sampling Train

Received: 2015/10/16

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals B.H. in H2O2/HNO3 Imp.(6020A)	ICP1/MS	4246778	2015/10/27	2015/10/27	Nan Raykha
Metals F.H. in Filter + Rinses (6020A)	ICP1/MS	4248555	2015/10/29	2015/10/28	Nan Raykha

Maxxam ID: BEC553

Sample ID:

Matrix: Stack Sampling Train

M5/29-NW BAGHOUSE-T2

Collected:

2015/10/06

Shipped: Received:

2015/10/16

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals B.H. in H2O2/HNO3 Imp.(6020A)	ICP1/MS	4246778	2015/10/27	2015/10/27	Nan Raykha
Metals F.H. in Filter + Rinses (6020A)	ICP1/MS	4248555	2015/10/28	2015/10/28	Nan Raykha

Maxxam ID: BEC555 Sample ID:

Matrix: Stack Sampling Train

M5/29-NW BAGHOUSE-T3

Collected: Shipped:

2015/10/06

Received: 2015/10/16

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals B.H. in H2O2/HNO3 Imp.(6020A)	ICP1/MS	4246778	2015/10/27	2015/10/27	Nan Raykha
Metals F.H. in Filter + Rinses (6020A)	ICP1/MS	4248555	2015/10/28	2015/10/28	Nan Raykha

Maxxam ID: BEC556

Matrix:

M5/29-BAGHOUSE SAND SEPARATOR-T1 Sample ID:

Stack Sampling Train

2015/10/06 Collected:

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals B.H. in H2O2/HNO3 Imp.(6020A)	ICP1/MS	4246778	2015/10/27	2015/10/27	Nan Raykha
Metals F.H. in Filter + Rinses (6020A)	ICP1/MS	4248555	2015/10/28	2015/10/28	Nan Raykha

Mostardi Platt

Client Project #: M154005

Site Location: ROCKFORD

TEST SUMMARY

Maxxam ID: BEC557

Collected: 2015/10/06

Sample ID: M5/29-BAGHOUSE SAND SEPARATOR-T2

Shipped:

Matrix: Stack Sampling Train

Received: 2015/10/16

	Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
ſ	Metals B.H. in H2O2/HNO3 Imp.(6020A)	ICP1/MS	4246778	2015/10/27	2015/10/27	Nan Raykha
ľ	Metals F.H. in Filter + Rinses (6020A)	ICP1/MS	4248555	2015/10/28	2015/10/28	Nan Raykha

Maxxam ID: BEC558

Collected:

2015/10/06

Sample ID:

M5/29-BAGHOUSE SAND SEPARATOR-T3 Matrix: Stack Sampling Train

Shipped:

Received: 2015/10/16

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Metals B.H. in H2O2/HNO3 Imp.(6020A)	ICP1/MS	4246778	2015/10/27	2015/10/27	Nan Raykha	
Metals F.H. in Filter + Rinses (6020A)	ICP1/MS	4248555	2015/10/28	2015/10/28	Nan Raykha	-

Maxxam ID: BEC559

Collected:

2015/10/06

Sample ID:

M5/29-BAGHOUSE GAS COOLER-T1

Shipped:

Received: 2015/10/16

Matrix: Stack Sampling Train

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals B.H. in H2O2/HNO3 Imp.(6020A)	ICP1/MS	4246778	2015/10/27	2015/10/27	Nan Raykha
Metals F.H. in Filter + Rinses (6020A)	ICP1/MS	4248555	2015/10/28	2015/10/28	Nan Raykha

Maxxam ID: BEC560

Collected: 2015/10/06

Sample ID: Matrix: Stack Sampling Train

M5/29-BAGHOUSE GAS COOLER-T2

Shipped:

Received: 2015/10/16

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals B.H. in H2O2/HNO3 Imp.(6020A)	ICP1/MS	4246778	2015/10/27	2015/10/27	Nan Raykha
Metals F.H. in Filter + Rinses (6020A)	ICP1/MS	4248555	2015/10/28	2015/10/28	Nan Raykha

Maxxam ID: BEC561

Collected: 2015/10/06

Sample ID: Matrix: Stack Sampling Train

M5/29-BAGHOUSE GAS COOLER-T3

Shipped: Received:

2015/10/16

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals B.H. in H2O2/HNO3 Imp.(6020A)	ICP1/MS	4246778	2015/10/27	2015/10/27	Nan Raykha
Metals F.H. in Filter + Rinses (6020A)	ICP1/MS	4248555	2015/10/28	2015/10/28	Nan Raykha

Maxxam ID: BEC562

Collected: 2015/10/07

Sample ID: M5/29-BLUE BAGHOUSE-T1 Matrix: Stack Sampling Train

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals B.H. in H2O2/HNO3 (mp.(6020A)	ICP1/MS	4246778	2015/10/27	2015/10/27	Nan Raykha
Metals F.H. in Filter + Rinses (6020A)	ICP1/MS	4248555	2015/10/28	2015/10/28	Nan Raykha

Mostardi Platt

Client Project #: M154005 Site Location: ROCKFORD

TEST SUMMARY

Maxxam ID: BEC565

Sample ID: M5/29-BLUE BAGHOUSE-T2

Matrix: Stack Sampling Train Collected: 2015/10/07

Shipped: Received:

2015/10/16

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals B.H. in H2O2/HNO3 Imp.(6020A)	ICP1/M\$	4246778	2015/10/27	2015/10/27	Nan Raykha
Metals F.H. in Filter + Rinses (6020A)	ICP1/MS	4248555	2015/10/28	2015/10/28	Nan Raykha

Maxxam ID: BEC566

Sample ID: M5/29-BLUE BAGHOUSE-T3

Matrix: Stack Sampling Train

Collected: 2015/10/07

Shipped:

Received: 2015/10/16

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals B.H. in H2O2/HNO3 Imp.(6020A)	ICP1/MS	4246778	2015/10/27	2015/10/27	Nan Raykha
Metals F.H. in Filter + Rinses (6020A)	ICP1/MS	4248555	2015/10/28	2015/10/28	Nan Raykha

Maxxam ID: **BEC567**

M5/29-BLUE BAGHOUSE-T4 Sample ID:

Matrix: Stack Sampling Train

Collected: 2015/10/07

Shipped:

Received: 2015/10/16

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals B.H. in H2O2/HNO3 Imp.(6020A)	ICP1/MS	4246778	2015/10/27	2015/10/27	Nan Raykha
Metals F.H. in Filter + Rinses (6020A)	ICP1/MS	4248555	2015/10/28	2015/10/28	Nan Raykha

Maxxam ID: BEC572

Sample ID: M5/29-BAGHOUSE SWEECO-T1

Matrix: Stack Sampling Train

Collected:

2015/10/07

Shipped:

Received: 2015/10/16

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals B.H. in H2O2/HNO3 Imp.(6020A)	ICP1/MS	4246778	2015/10/27	2015/10/27	Nan Raykha
Metals F.H. in Filter + Rinses (6020A)	ICP1/MS	4248555	2015/10/28	2015/10/28	Nan Raykha

Maxxam ID: BEC573

Sample ID: M5/29-BAGHOUSE SWEECO-T2

Matrix: Stack Sampling Train

Collected: 2015/10/07

Shipped:

Received: 2015/10/16

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals B.H. in H2O2/HNO3 Imp.(6020A)	ICP1/MS	4246778	2015/10/27	2015/10/27	Nan Raykha
Metals F.H. in Filter + Rinses (6020A)	ICP1/MS	4248555	2015/10/28	2015/10/28	Nan Raykha

Maxxam ID: BEC574

Sample ID: M5/29-BAGHOUSE SWEECO-T3

Matrix: Stack Sampling Train

Collected: 2015/10/07

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals B.H. in H2O2/HNO3 Imp.(6020A)	ICP1/MS	4246778	2015/10/27	2015/10/27	Nan Raykha
Metals F.H. in Filter + Rinses (6020A)	ICP1/MS	4248555	2015/10/28	2015/10/28	Nan Raykha

Mostardi Platt

Client Project #: M154005

Site Location: ROCKFORD

TEST SUMMARY

Maxxam ID: BEC575

Collected: 2015/10/07 Shipped:

Sample ID:

M5/29-BAGHOUSE SWEECO-T4 Matrix: Stack Sampling Train

2015/10/16 Received:

Extracted Date Analyzed Analyst Instrumentation Batch **Test Description** ICP1/MS 4246778 2015/10/27 2015/10/27 Nan Raykha Metals B.H. in H2O2/HNO3 Imp.(6020A) ICP1/MS 4248555 2015/10/28 2015/10/28 Nan Raykha Metals F.H. in Filter + Rinses (6020A)

Maxxam ID: BEC576

Collected: 2015/10/07

Sample ID: Matrix:

M5/29-BAGHOUSE INLET-T1 Stack Sampling Train

Shipped: Received:

2015/10/16

Date Analyzed Extracted Analyst **Test Description** Instrumentation Batch 4246778 2015/10/27 2015/10/27 Nan Raykha Metals B.H. in H2O2/HNO3 Imp.(6020A) ICP1/MS 2015/10/28 2015/10/28 Nan Raykha ICP1/MS 4248555 Metals F.H. in Filter + Rinses (6020A)

Maxxam ID: BEC577

Collected:

2015/10/07

Sample ID:

M5/29-BAGHOUSE INLET-T2 Matrix: Stack Sampling Train

Shipped: Received:

2015/10/16

Instrumentation Batch Extracted **Date Analyzed** Analyst **Test Description** Metals B.H. in H2O2/HNO3 Imp.(6020A) ICP1/MS 4246778 2015/10/27 2015/10/27 Nan Raykha ICP1/MS 4248555 2015/10/28 2015/10/28 Nan Raykha Metals F.H. in Filter + Rinses (6020A)

Maxxam ID: BEC578

Collected: 2015/10/07

Sample ID:

M5/29-BAGHOUSE INLET-T3 Matrix: Stack Sampling Train

Shipped:

Received: 2015/10/16

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals B.H. in H2O2/HNO3 Imp.(6020A)	ICP1/MS	4246784	2015/10/27	2015/10/27	Nan Raykha
Metals F.H. in Filter + Rinses (6020A)	ICP1/MS	4248561	2015/10/28	2015/10/28	Nan Raykha

Maxxam ID: BEC578 Dup

Collected:

2015/10/07

Sample ID: M5/29-BAGHOUSE INLET-T3 Matrix: Stack Sampling Train

Shipped:

2015/10/16 Received:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals B.H. in H2O2/HNO3 Imp.(6020A)	ICP1/MS	4246784	2015/10/27	2015/10/27	Nan Raykha
Metals F.H. in Filter + Rinses (6020A)	ICP1/MS	4248561	2015/10/28	2015/10/28	Nan Raykha

Maxxam ID:

BEC579

Collected: Shipped:

2015/10/07

Sample ID:

M5/29-BAGHOUSE INLET-T4 Matrix: Stack Sampling Train

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals B.H. in H2O2/HNO3 (mp.(6020A)	ICP1/MS	4246784	2015/10/27	2015/10/27	Nan Raykha
Metals F.H. in Filter + Rinses (6020A)	ICP1/MS	4248561	2015/10/28	2015/10/28	Nan Raykha

Mostardi Platt

Client Project #: M154005 Site Location: ROCKFORD

TEST SUMMARY

Maxxam ID: BEC580

Shipped:

Collected: 2015/10/07

Sample ID:

M5/29-TPU BAGHOUSE INLET-T1 Matrix: Stack Sampling Train

Received: 2015/10/16

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Metals B.H. in H2O2/HNO3 Imp.(6020A)	ICP1/MS	4246784	2015/10/27	2015/10/27	Nan Raykha	<u> </u>
Metals F.H. in Filter + Rinses (6020A)	ICP1/MS	4248561	2015/10/28	2015/10/28	Nan Raykha	

Maxxam ID: BEC581

Collected: 2015/10/07

Sample ID:

M5/29-TPU BAGHOUSE INLET-T2 Matrix: Stack Sampling Train

Shipped:

Received: 2015/10/16

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals B.H. in H2O2/HNO3 Imp.(6020A)	ICP1/MS	4246784	2015/10/27	2015/10/27	Nan Raykha
Metals F.H. in Filter + Rinses (6020A)	ICP1/MS	4248561	2015/10/28	2015/10/28	Nan Raykha

Maxxam ID: BEC582

Collected: 2015/10/07

Sample ID: M5/29-TPU BAGHOUSE INLET-T3

Shipped:

Received: 2015/10/16

Matrix: Stack Sampling Train

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals B.H. in H2O2/HNO3 Imp.(6020A)	ICP1/MS	4246784	2015/10/27	2015/10/27	Nan Raykha
Metals F.H. in Filter + Rinses (6020A)	ICP1/MS	4248561	2015/10/28	2015/10/28	Nan Raykha

Maxxam ID: BEC632

Matrix: Stack Sampling Train

Sample ID: AUDIT-0929150-1425

Collected:

Shipped:

Received: 2015/10/16

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Metals F.H. in Filter + Rinses (6020A)	ICP1/MS	4248561	2015/10/28	2015/10/28	Nan Raykha	·

Maxxam ID: BEC640

Sample ID: AUDIT-0929150-1426

Matrix: Stack Sampling Train

Collected:

Shipped:

Mostardi Platt

Client Project #: M154005 Site Location: ROCKFORD

GENERAL COMMENTS

Sample BEC556-01: Extra 20x dilution was reported for Cu and Pb for this sample.

Sample BEC557-01: Extra 20x dilution was reported for Cu and Pb for this sample.

Sample BEC558-01: Extra 20x dilution was reported for Cu and Pb for this sample.

EPA M29 METALS (FRONT & BACK SEPARATE)

Metals F.H. in Filter + Rinses (6020A): Extra 2x, 5x or 10x dilution was required for all samples except BEC523, due to the matrix and high levels. Post digestion duplicate and spike were done on sample BEC552.

Trace level Ba was observed in the Processed Blank.

Metals B.H. in H2O2/HNO3 Imp.(6020A): Post digestion duplicate and spike were done on sample BEC552.

Sample digests for BEC560, BEC575 and BEC577 were reanalyzed on 2015-10-28 to confirm data.

Metals F.H. in Filter + Rinses (6020A): Extra 5x or 50x dilution was required for all samples due to the matrix and high levels.

Post digestion duplicate and spike were done on sample BEC578.

Trace level Zn and Ba were observed in the Processed Blank.

Metals B.H. in H2O2/HNO3 Imp.(6020A): Post digestion duplicate and spike were done on sample BEC578.

Sample digests for BEC580 and BEC581 were reanalyzed on 2015-10-28 to confirm data.

ELEMENTS BY ICP/MS (STACK SAMPLING TRAIN)

Metals F.H. in Filter + Rinses (6020A): Extra 5x or 50x dilution was required for all samples due to the matrix and high levels.

Post digestion duplicate and spike were done on sample BEC578.

Trace level Zn and Ba were observed in the Processed Blank.

Results relate only to the items tested.

Mostardi Platt

Client Project #: M154005 Site Location: ROCKFORD

QUALITY ASSURANCE REPORT

QA/QC				Date	_	 %		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
4246778	N_F		Back Half Antimony (Sb)	2015/10/27		96	%	70 - 130
	_	,	Back Half Arsenic (As)	2015/10/27		95	%	70 - 130
1			Back Half Barium (Ba)	2015/10/27		99	%	70 - 130
			Back Half Beryllium (Be)	2015/10/27		97	%	70 - 130
!			Back Half Cadmium (Cd)	2015/10/27		94	%	70 - 130
			Back Half Chromium (Cr)	2015/10/27		98	%	70 - 130
			Back Half Cobalt (Co)	2015/10/27		98	%	70 - 130
			Back Half Copper (Cu)	2015/10/27		97	%	70 - 130
			Back Half Lead (Pb)	2015/10/27		98	%	70 - 130
			Back Half Manganese (Mn)	2015/10/27		97	%	70 - 130
i			Back Half Nickel (Ni)	2015/10/27		98	%	70 - 130
			Back Half Selenium (Se)	2015/10/27		90	%	70 - 130
			Back Half Silver (Ag)	2015/10/27		99	%	70 - 130
			Back Half Zinc (Zn)	2015/10/27		93	%	70 - 130
4246778	NR	Matrix Spike DUP(BEC552)	, ,	2015/10/27		96	%	70 - 130
			Back Half Arsenic (As)	2015/10/27		94	%	70 - 130
			Back Half Barium (Ba)	2015/10/27		99	%	70 - 130
			Back Half Beryllium (Be)	2015/10/27		96	%	70 - 130
			Back Half Cadmium (Cd)	2015/10/27		95	%	70 - 130
			Back Half Chromium (Cr)	2015/10/27		99	%	70 - 130
			Back Half Cobalt (Co)	2015/10/27		100	%	70 - 130
			Back Half Copper (Cu)	2015/10/27		98	%	70 - 130
			Back Half Lead (Pb)	2015/10/27		97	%	70 - 130
			Back Half Manganese (Mn)	2015/10/27		98	%	70 - 130
			Back Half Nickel (Ni)	2015/10/27		99	%	70 - 130 70 - 130
			Back Half Selenium (Se)	2015/10/27		91	%	70 - 130
			Back Half Silver (Ag)	2015/10/27		100	%	70 - 130
			Back Half Zinc (Zn)	2015/10/27		92	%	70 - 130
4246778	N_R	MS/MSD RPD	Back Half Antimony (Sb)	2015/10/27	0	32	%	20
			Back Half Arsenic (As)	2015/10/27	1.1		%	20
			Back Half Barium (Ba)	2015/10/27	0		% %	20
			Back Half Beryllium (Be)	2015/10/27	1.0		% %	20
			Back Half Cadmium (Cd)	2015/10/27	1.1		%	
			Back Half Chromium (Cr)	2015/10/27	1.0		%	20
			Back Half Cobalt (Co)	2015/10/27	2.0		%	20
			Back Half Copper (Cu)	2015/10/27	1.0		%	20
			Back Half Lead (Pb)	2015/10/27	1.0			20
			Back Half Manganese (Mn)	2015/10/27	1.0		% %	20
			Back Half Nickel (Ni)	2015/10/27	1.0			20
			Back Half Selenium (Se)	2015/10/27			%	20
			Back Half Silver (Ag)	2015/10/27	1.1 1.0		%	20
			Back Half Zinc (Zn)				%	20
4246778	N_R		Back Half Antimony (Sb)	2015/10/27	1.1	100	%	20
4240//0	14717	-	Back Half Arsenic (As)	2015/10/27		100	%	85 - 115
			Back Half Barium (Ba)	2015/10/27		98	%	85 - 115
			Back Half Beryllium (Be)	2015/10/27		100	%	85 - 115
			Back Half Cadmium (Cd)	2015/10/27		98	%	85 - 115
				2015/10/27		97	%	85 - 115
			Back Half Chromium (Cr)	2015/10/27		101	%	85 - 115
			Back Half Cobalt (Co)	2015/10/27		102	%	85 - 115
			Back Half Copper (Cu)	2015/10/27		100	%	85 - 115
			Back Half Lead (Pb)	2015/10/27		100	%	85 - 115
			Back Half Manganese (Mn)	2015/10/27		100	%	85 - 115
			Back Half Nickel (Ni)	2015/10/27		101	%	85 - 115

Mostardi Platt

Client Project #: M154005 Site Location: ROCKFORD

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNIT5	QC Limits
	_		Back Half Selenium (Se)	2015/10/27		94	96	85 - 115
			Back Half Silver (Ag)	2015/10/27		104	%	85 - 115
			Back Half Zinc (Zn)	2015/10/27		96	96	85 - 1 1 5
4246778	NR	Spiked Blank DUP	Back Half Antimony (Sb)	2015/10/27		101	96	85 - 115
		-	Back Half Arsenic (As)	2015/10/27		99	%	85 - 115
			Back Half Barium (Ba)	2015/10/27		102	%	85 - 115
			Back Half Beryllium (Be)	2015/10/27		98	%	85 - 115
			Back Half Cadmium (Cd)	2015/10/27		99	96	85 - 115
			Back Half Chromium (Cr)	2015/10/27		102	96	85 - 115
			Back Half Cobalt (Co)	2015/10/27		103	96	85 - 115
			Back Half Copper (Cu)	2015/10/27		101	96	85 - 11 5
			Back Half Lead (Pb)	2015/10/27		103	%	85 - 115
			Back Half Manganese (Mn)	2015/10/27		101	%	85 - 115
			Back Half Nickel (Ni)	2015/10/27		102	%	85 - 115
			Back Half Selenium (Se)	2015/10/27		93	%	85 - 115
			Back Half Silver (Ag)	2015/10/27		104	%	85 - 115 85 - 115
			Back Half Zinc (Zn)	2015/10/27		96	%	85 - 115
4246778	N_R	RPD	Back Half Antimony (Sb)	2015/10/27	1.3	90	%	
4240776	וא_וי	NFD	Back Half Arsenic (As)	2015/10/27	0.91			20
			Back Half Barium (Ba)	2015/10/27	2.1		%	20
			Back Half Beryllium (Be)	• • •	0.50		96	20
			Back Half Cadmium (Cd)	2015/10/27			% %	20
			Back Half Chromium (Cr)	2015/10/27	1.6			20
			, ,	2015/10/27	1.0		%	20
			Back Half Cobalt (Co)	2015/10/27	0.97		96	20
			Back Half Copper (Cu)	2015/10/27	1.2		96	20
			Back Half Lead (Pb)	2015/10/27	2.6		%	20
			Back Half Manganese (Mn)	2015/10/27	1.2		%	20
			Back Half Nickel (Ni)	2015/10/27	1.4		%	20
			Back Half Selenium (Se)	2015/10/27	0.23		%	20
			Back Half Silver (Ag)	2015/10/27	0.21		%	20
			Back Half Zinc (Zn)	2015/10/27	0.42		%	20
4246778	N_R	Method Blank	Back Half Antimony (Sb)	2015/10/27	<0.20		ug	
			Back Half Arsenic (As)	2015/10/27	<0.20		ug	
			Back Half Barium (Ba)	2015/10/27	<1.5		ug	
			Back Half Beryllium (Be)	2015/10/27	<0.050		ug	
			Back Half Cadmium (Cd)	2015/10/27	<0.050		ug	
			Back Half Chromium (Cr)	2015/10/27	<0.15		u g	
			Back Half Cobalt (Co)	2015/10/27	<0.050		ug	
			Back Half Copper (Cu)	2015/10/27	<2.0		ug	
			Back Half Lead (Pb)	2015/10/27	<0.10		ug	
			Back Half Manganese (Mn)	2015/10/27	<0.25		ug	
			Back Half Nickel (Ni)	2015/10/27	<0.25		ug	
			Back Half Selenium (Se)	2015/10/27	<0.50		ug	
			Back Half Silver (Ag)	2015/10/27	<0.10		ug	
			Back Half Zinc (Zn)	2015/10/27	<2.5		ug	
4246778	N_R	RPD - Sample/Sample Dup	• • •	2015/10/27	NC		%	20
			Back Half Arsenic (As)	2015/10/27	NC		%	20
			Back Half Barium (Ba)	2015/10/27	NC		%	20
			Back Half Beryllium (Be)	2015/10/27	NC		%	20
			Back Half Cadmium (Cd)	2015/10/27	0.54		%	20
			Back Half Chromium (Cr)	2015/10/27	0		%	20
			Back Half Cobalt (Co)	2015/10/27	0.55		%	20
			Back Half Copper (Cu)	2015/10/27	NC		%	20

Mostardi Platt

Client Project #: M154005 Site Location: ROCKFORD

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Back Half Lead (Pb)	2015/10/27	1.5	<u>`</u>		20
			Back Half Manganese (Mn)	2015/10/27	NC			20
			Back Half Nickel (Ni)	2015/10/27	NC			20
			Back Half Selenium (Se)	2015/10/27	NC			20
			Back Half Silver (Ag)	2015/10/27	NC			20
			Back Half Zinc (Zn)	2015/10/27	NC			20
4246784	N_F	R Matrix Spike(BEC578)	Back Half Antimony (Sb)	2015/10/27		94		70 - 130
1			Back Half Arsenic (As)	2015/10/27		90		70 - 130
			Back Half Barium (Ba)	2015/10/27		98		70 - 130
			Back Half Beryllium (Be)	2015/10/27		90		70 - 130
			Back Half Cadmium (Cd)	2015/10/27		91		70 - 130
			Back Half Chromium (Cr)	2015/10/27		97		70 - 130
			Back Half Cobalt (Co)	2015/10/27		98		70 - 130
			Back Half Copper (Cu)	2015/10/27		96		70 - 130
			Back Half Lead (Pb)	2015/10/27		96		70 - 130
			Back Half Manganese (Mn)	2015/10/27		95		70 - 130
			Back Half Nickel (Ni)	2015/10/27		97		70 - 130
			Back Half Selenium (Se)	2015/10/27		84		70 - 130
			Back Half Silver (Ag)	2015/10/27		97		70 - 130
			Back Half Zinc (Zn)	2015/10/27		86		70 - 130 70 - 130
4246784	N R	Matrix Spike DUP(BEC578)		2015/10/27		94		70 - 130
	_		Back Half Arsenic (As)	2015/10/27		92		70 - 130
•			Back Half Barium (Ba)	2015/10/27		99		70 - 130
			Back Half Beryllium (Be)	2015/10/27		90		70 - 130
			Back Half Cadmium (Cd)	2015/10/27		92		70 - 130
			Back Half Chromium (Cr)	2015/10/27		99		70 - 130
			Back Half Cobalt (Co)	2015/10/27		100		70 - 130 70 - 130
			Back Half Copper (Cu)	2015/10/27		98		70 - 130
			Back Half Lead (Pb)	2015/10/27		96		70 - 130
l			Back Half Manganese (Mn)	2015/10/27		97		70 - 130
			Back Half Nickel (Ni)	2015/10/27		99		70 - 130
			Back Half Selenium (Se)	2015/10/27		86		70 - 130
			Back Half Silver (Ag)	2015/10/27		97		70 - 130
			Back Half Zinc (Zn)	2015/10/27		86		70 - 130 70 - 130
4246784	N_R	MS/MSD RPD	Back Half Antimony (Sb)	2015/10/27	0	00	% % % % % % % % % % % % % % % % % % %	
7270707	M_I	1113) 11130 111 0	Back Half Arsenic (As)	2015/10/27	2.2			20
			Back Half Barium (Ba)	2015/10/27	1.0			20
			Back Half Beryllium (Be)	2015/10/27	0			20
			Back Half Cadmium (Cd)		1.1			20
			Back Half Chromium (Cr)	2015/10/27 2015/10/27				20
			Back Half Cobalt (Co)		2.0			20
			Back Half Copper (Cu)	2015/10/27	2.0			20
			Back Half Lead (Pb)	2015/10/27	2.1			20
				2015/10/27	0			20
			Back Half Manganese (Mn)	2015/10/27	2.1			20
			Back Half Nickel (Ni)	2015/10/27	2.0			20
			Back Half Selenium (Se)	2015/10/27	2.4			20
			Back Half Silver (Ag)	2015/10/27	0			20
4346764	AL D		Back Half Zinc (Zn)	2015/10/27	0			20
4246784	N_R	•	Back Half Antimony (Sb)	2015/10/27		98		85 - 115
			Back Half Arsenic (As)	2015/10/27		97		85 - 115
			Back Half Barium (Ba)	2015/10/27		100		85 - 115
•			Back Half Beryllium (Be)	2015/10/27		97		85 - 115
			Back Half Cadmium (Cd)	2015/10/27		96	%	85 - 115

Mostardi Platt

Client Project #: M154005 Site Location: ROCKFORD

QA/QC				Date		%		
Batch	Init	: QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
l			Back Half Chromium (Cr)	2015/10/27		100	%	85 - 115
1			Back Half Cobalt (Co)	2015/10/27		102	%	85 - 115
1			Back Half Copper (Cu)	2015/10/27		100	%	85 - 115
			Back Half Lead (Pb)	2015/10/27		99	%	85 - 115
l			Back Half Manganese (Mn)	2015/10/27		98	%	85 - 115
			Back Half Nickel (Ni)	2015/10/27		100	%	85 - 115
			Back Half Selenium (Se)	2015/10/27		92	%	85 - 115
1			Back Half Silver (Ag)	2015/10/27		103	%	85 - 115
			Back Half Zinc (Zn)	2015/10/27		94	%	85 - 115
4246784	4 N_F	R Spiked Blank DUP	Back Half Antimony (Sb)	2015/10/27		99	%	85 - 115
ł			Back Half Arsenic (As)	2015/10/27		99	%	85 - 115
			Back Half Barium (Ba)	2015/10/27		100	%	85 - 115
			Back Half Beryllium (Be)	2015/10/27		99	%	85 - 115
i			Back Half Cadmium (Cd)	2015/10/27		98	%	85 - 115
1			Back Half Chromium (Cr)	2015/10/27		101	%	85 - 115
			Back Half Cobalt (Co)	2015/10/27		103	%	85 - 115
1			Back Half Copper (Cu)	2015/10/27		101	%	85 - 115
ļ			Back Half Lead (Pb)	2015/10/27		102	%	85 - 115
			Back Half Manganese (Mn)	2015/10/27		100	%	85 - 115
			Back Half Nickel (Ni)	2015/10/27		102	%	85 - 115
			Back Half Selenium (Se)	2015/10/27		94	%	85 - 115
1			Back Half Silver (Ag)	2015/10/27		102	%	85 - 115
			Back Half Zinc (Zn)	2015/10/27		96	%	8 5 - 115
4246784	N_R	ŔPD	Back Half Antimony (Sb)	2015/10/27	0.89		%	20
			Back Half Arsenic (As)	2015/10/27	1.6		%	20
			Back Half Barium (Ba)	2015/10/27	0.74		%	20
			Back Half Beryllium (Be)	2015/10/27	2.1		%	20
i			Back Half Cadmium (Cd)	2015/10/27	2.2		%	20
j			Back Half Chromium (Cr)	2015/10/27	1.2		%	20
			Back Half Cobalt (Co)	2015/10/27	1.2		%	20
			Back Half Copper (Cu)	2015/10/27	1.1		%	20
			Back Half Lead (Pb)	2015/10/27	3.5		%	20
			Back Haif Manganese (Mn)	2015/10/27	2.1		%	20
			Back Half Nickel (Ni)	2015/10/27	1.9		%	20
ı			Back Half Selenium (Se)	2015/10/27	2.4		%	20
			Back Half Silver (Ag)	2015/10/27	1.2		%	20
			Back Half Zinc (Zn)	2015/10/27	1.6		%	20
4246784	N_R	Method Blank	Back Half Antimony (Sb)	2015/10/27	<0.20		ug	20
			Back Half Arsenic (As)	2015/10/27	<0.20			
			Back Half Barium (Ba)	2015/10/27	<1.5		ug ug	
			Back Half Beryllium (Be)	2015/10/27	<0.050			
			Back Half Cadmium (Cd)	2015/10/27	<0.050		ug	
			Back Half Chromium (Cr)	2015/10/27	<0.15		ug	
			Back Half Cobalt (Co)	2015/10/27	<0.050		ug	
			Back Half Copper (Cu)	2015/10/27	<2.0		ug	
			Back Half Lead (Pb)	2015/10/27	<0.10		ug	-
			Back Half Manganese (Mn)	2015/10/27	<0.25		ug	1
			Back Half Nickel (Ni)	2015/10/27	<0.25		ug	ļ
			Back Half Selenium (Se)	2015/10/27	<0.50		ug	
			Back Half Silver (Ag)	2015/10/27	<0.10		ug	
			Back Half Zinc (Zn)	2015/10/27	<2.5		ug	
4246784	N_R	RPD - Sample/Sample Dup		2015/10/27	1.4		ug o/	20
			1 11		4.7		%	20

Mostardi Platt

Client Project #: M154005 Site Location: ROCKFORD

QA/QC				Date				
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Back Half Barium (Ba)	2015/10/27	NC		%	20
			Back Half Beryllium (Be)	2015/10/27	NC		%	20
			Back Half Cadmium (Cd)	2015/10/27	NC		%	20
			Back Half Chromium (Cr)	2015/10/27	0.78		%	20
			Back Half Cobalt (Co)	2015/10/27	0.77		%	20
			Back Half Copper (Cu)	2015/10/27	NC		%	20
1			Back Half Lead (Pb)	2015/10/27	0.12		%	20
			Back Half Manganese (Mn)	2015/10/27	1.7		%	20
			Back Half Nickel (Ni)	2015/10/27	2.4		%	20
			Back Half Selenium (Se)	2015/10/27	NC		%	20
			Back Half Silver (Ag)	2015/10/27	NC		%	20
			Back Half Zinc (Zn)	2015/10/27	NC		%	20
4247327	N_R	Spiked Blank	Total Antimony (Sb)	2015/10/27		98	%	85 - 11 5
			Total Arsenic (As)	2015/10/27		97	%	85 - 115
			Total Barium (Ba)	2015/10/27		100	%	85 - 115
			Total Beryllium (Be)	2015/10/27		97	%	85 - 115
			Total Cadmium (Cd)	2015/10/27		96	%	85 - 115
			Total Chromium (Cr)	2015/10/27		100	%	85 - 115
			Total Cobalt (Co)	2015/10/27		102	%	85 - 115
			Total Copper (Cu)	2015/10/27		100	%	85 - 115
			Total Lead (Pb)	2015/10/27		99	%	85 - 115
			Total Manganese (Mn)	2015/10/27		98	%	85 - 115
			Total Nickel (Ni)	2015/10/27		100	%	85 - 115
			Total Selenium (Se)	2015/10/27		92	%	85 - 115
			Total Silver (Ag)	2015/10/27		103	%	85 - 115
			Total Zinc (Zn)	2015/10/27		94	%	85 - 115
4247327	N_R	Spiked Blank DUP	Total Antimony (Sb)	2015/10/27		99	%	85 - 115
			Total Arsenic (As)	2015/10/27		99	%	85 - 115
			Total Barium (Ba)	2015/10/27		100	%	85 - 115
			Total Beryllium (Be)	2015/10/27		99	%	85 - 115
			Total Cadmium (Cd)	2015/10/27		98	%	85 - 115
			Total Chromium (Cr)	2015/10/27		101	%	85 - 115
			Total Cobalt (Co)	2015/10/27		103	%	85 - 115
			Total Copper (Cu)	2015/10/27		101	%	85 - 115
			Total Lead (Pb)	2015/10/27		102	%	85 - 115
			Total Manganese (Mn)	2015/10/27		100	%	85 - 115
			Total Nickel (Ni)	2015/10/27		102	%	85 - 115
			Total Selenium (Se)	2015/10/27		94	%	85 - 115
			Total Silver (Ag)	2015/10/27		102	%	85 - 115
			Total Zinc (Zn)	2015/10/27		96	%	85 - 115
4247327	N_R	RPD	Total Antimony (Sb)	2015/10/27	0.89		%	20
			Total Arsenic (As)	2015/10/27	1.6		%	20
			Total Barium (Ba)	2015/10/27	0.74		%	20
			Total Beryllium (Be)	2015/10/27	2.1		%	20
			Total Cadmium (Cd)	2015/10/27	2.2		%	20
			Total Chromium (Cr)	2015/10/27	1.2		%	20
			Total Cobalt (Co)	2015/10/27	1.2		%	20
			Total Copper (Cu)	2015/10/27	1.1		%	20
			Total Lead (Pb)	2015/10/27	3.5		%	20
			Total Manganese (Mn)	2015/10/27	2.1		%	20
			Total Nickel (Ni)	2015/10/27	1.9		%	20
			Total Selenium (Se)	2015/10/27	2.4		%	20
			Total Silver (Ag)	2015/10/27	1.2		%	20

Mostardi Platt

Client Project #: M154005 Site Location: ROCKFORD

QA/QC				Date	<u>.</u>			
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limit
			Total Zinc (Zn)	2015/10/27	1.6		%	20
4247327	N_F	R Method Blank	Total Antimony (Sb)	2015/10/27	< 0.010		ug/mL	
			Total Arsenic (As)	2015/10/27	< 0.010		ug/mL	
İ			Total Barium (Ba)	2015/10/27	< 0.060		ug/mL	
			Total Beryllium (Be)	2015/10/27	< 0.0020		ug/mL	
			Total Cadmium (Cd)	2015/10/27	< 0.0020		ug/mL	
			Total Chromium (Cr)	2015/10/27	< 0.0050		ug/mL	
			Total Cobalt (Co)	2015/10/27	< 0.0020		ug/mL	
			Total Copper (Cu)	2015/10/27	< 0.010		ug/mL	
			Total Lead (Pb)	2015/10/27	<0.0050		ug/mL	
			Total Manganese (Mn)	2015/10/27	< 0.010		ug/mL	
			Total Nickel (Ni)	2015/10/27	<0.010		ug/mL	
			Total Selenium (Se)	2015/10/27	<0.020		ug/mL	
			Total Silver (Ag)	2015/10/27	<0.0050		ug/mL	
			Total Zinc (Zn)	2015/10/27	<0.050		ug/mL	
4248555	N_R	Matrix Spike(BEC552)	Front Half Antimony (Sb)	2015/10/28		103	%	70 - 130
			Front Half Arsenic (As)	2015/10/28		96	%	70 - 130
			Front Half Barium (Ba)	2015/10/28		101	%	70 - 130
			Front Half Beryllium (Be)	2015/10/28		96	%	70 - 130
			Front Half Cadmium (Cd)	2015/10/28		100	%	70 - 130
			Front Half Chromium (Cr)	2015/10/28		96	%	70 - 130
			Front Half Cobalt (Co)	2015/10/28		98	%	70 - 130
			Front Half Copper (Cu)	2015/10/28		95	%	70 - 130
			Front Half Lead (Pb)	2015/10/28		94	%	70 - 130
			Front Half Manganese (Mn)	2015/10/28		98	%	70 - 130
			Front Half Nickel (Ni)	2015/10/28		95	%	70 - 130
			Front Half Selenium (Se)	2015/10/28		98	%	70 - 130
			Front Half Silver (Ag)	2015/10/28		100	%	70 - 130
240555		44 . (9 1)	Front Half Zinc (Zn)	2015/10/28		101	%	70 - 130
248555	N_R	Matrix Spike DUP(BEC552)		2015/10/28		107	%	70 - 130
			Front Half Arsenic (As)	2015/10/28		98	%	70 - 130
			Front Half Barium (Ba)	2015/10/28		102	%	70 - 130
			Front Half Beryllium (Be)	2015/10/28		95	%	70 - 130
			Front Half Cadmium (Cd)	2015/10/28		103	%	70 - 130
			Front Half Chromium (Cr)	2015/10/28		98	%	70 - 130
			Front Half Cobalt (Co)	2015/10/28		100		70 - 130
			Front Half Copper (Cu)	2015/10/28		96	%	70 - 130
			Front Half Lead (Pb)	2015/10/28		96		70 - 130
			Front Half Manganese (Mn)	2015/10/28		99		70 - 130
			Front Half Nickel (Ni)	2015/10/28		98		70 - 130
			Front Half Selenium (Se)	2015/10/28		99		70 - 130
			Front Half Silver (Ag)	2015/10/28	-	102		70 - 130
			Front Half Zinc (Zn)	2015/10/28		103		70 - 130
2 485 55 i	N_R		Front Half Antimony (Sb)	2015/10/28	3.8		%	20
			Front Half Arsenic (As)	2015/10/28	2.1		%	20
			Front Half Barium (Ba)	2015/10/28	0.99		%	20
			Front Half Beryllium (Be)	2015/10/28	1.0		%	20
			Front Half Cadmium (Cd)	2015/10/28	3.0		%	20
			Front Half Chromium (Cr)	2015/10/28	2.1		%	20
			Front Half Cobalt (Co)	2015/10/28	2.0		%	20
			Front Half Copper (Cu)	2015/10/28	1.0		%	20
			Front Half Lead (Pb)	2015/10/28	2.1		%	20
			Front Half Manganese (Mn)	2015/10/28	1.0		%	20

Mostardi Platt

Client Project #: M154005 Site Location: ROCKFORD

QA/QC			* * * * * * * * * * * * * * * * * * * *	Date	<u>-</u>	%		
Batch	init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Front Half Nickel (Ni)	2015/10/28	3.1	•	%	20
			Front Half Selenium (Se)	2015/10/28	1.0		%	20
			Front Half Silver (Ag)	2015/10/28	2.0		%	20
			Front Half Zinc (Zn)	2015/10/28	2.0		%	20
4248555	N_R	Spiked Blank	Front Half Antimony (Sb)	2015/10/28		98	%	85 - 115
			Front Half Arsenic (As)	2015/10/28		99	%	85 - 115
			Front Half Barium (Ba)	2015/10/28		97	%	85 - 115
			Front Half Beryllium (Be)	2015/10/28		102	%	85 - 115
			Front Half Cadmium (Cd)	2015/10/28		97	%	85 - 115
			Front Half Chromium (Cr)	2015/10/28		101	%	85 - 115
			Front Half Cobalt (Co)	2015/10/28		104	%	85 - 115
			Front Half Copper (Cu)	2015/10/28		101	%	85 - 1 15
ļ			Front Half Lead (Pb)	2015/10/28		102	%	85 - 115
ł			Front Half Manganese (Mn)	2015/10/28		102	%	85 - 115
			Front Half Nickel (Ni)	2015/10/28		102	%	85 - 115
			Front Half Selenium (Se)	2015/10/28		99	%	85 - 115
			Front Half Silver (Ag)	2015/10/28		103	%	85 - 115
			Front Half Zinc (Zn)	2015/10/28		104	%	85 - 115
4248555	NR	Spiked Blank DUP	Front Half Antimony (Sb)	2015/10/28		99	%	85 - 115
	_	·	Front Half Arsenic (As)	2015/10/28		100	%	85 - 115
			Front Half Barium (Ba)	2015/10/28		97	%	85 - 115
			Front Half Beryllium (Be)	2015/10/28		100	%	85 - 115
•			Front Half Cadmium (Cd)	2015/10/28		97	%	85 - 115
			Front Half Chromium (Cr)	2015/10/28		100	%	85 - 115
			Front Half Cobalt (Co)	2015/10/28		104	%	85 - 115
			Front Half Copper (Cu)	2015/10/28		101	%	85 - 115
			Front Half Lead (Pb)	2015/10/28		100	%	85 - 115
			Front Half Manganese (Mn)	2015/10/28		101	%	85 - 115
			Front Half Nickel (Ni)	2015/10/28		101	%	85 - 115
			Front Half Selenium (Se)	2015/10/28		98	%	85 - 115
			Front Half Silver (Ag)	2015/10/28		102	%	85 - 115
			Front Half Zinc (Zn)	2015/10/28		104	%	85 - 115
4248555	N_R	RPD	Front Half Antimony (Sb)	2015/10/28	0.70		%	20
	-		Front Half Arsenic (As)	2015/10/28	0.42		%	20
			Front Half Barium (Ba)	2015/10/28	0.054		%	20
			Front Half Beryllium (Be)	2015/10/28	1.9		%	20
			Front Half Cadmium (Cd)	2015/10/28	0.28		%	20
			Front Half Chromium (Cr)	2015/10/28	0.39		%	20
			Front Half Cobalt (Co)	2015/10/28	0.76		%	20
			Front Half Copper (Cu)	2015/10/28	0.036		%	20
			Front Half Lead (Pb)	2015/10/28	2.0		%	20
			Front Half Manganese (Mn)	2015/10/28	1.5		%	20
			Front Half Nickel (Ni)	2015/10/28	0.79		%	20
			Front Half Selenium (Se)	2015/10/28	0.45		%	20
			Front Half Silver (Ag)	2015/10/28	1.1		%	20
			Front Half Zinc (Zn)	2015/10/28	0.21		%	20
42 485 55	N R	Method Blank	Front Half Antimony (Sb)	2015/10/28	<0.40		ug	
			Front Half Arsenic (As)	2015/10/28	<0.40		ug	
			Front Half Barium (Ba)	2015/10/28	3.5,		ug	
					RDL=3.0		~ 5	
			Front Half Beryllium (Be)	2015/10/28				
			Front Half Cadmium (Cd)		<0.10		ug	
				2015/10/28	<0.10		ug	
			Front Half Chromium (Cr)	2015/10/28	<0.30		ug	

Mostardi Platt

Client Project #: M154005 Site Location: ROCKFORD

QA/QC				NEPORT(CONT D)				
Batch	Init	t QC Type	Parameter	Date Analyzed	Malora	%		
			Front Half Cobalt (Co)	2015/10/28	Value	Recovery		QC Limits
			Front Half Copper (Cu)	2015/10/28	<0.10 <2.0		ug	
			Front Half Lead (Pb)	2015/10/28	<0.20		ug	
			Front Half Manganese (Mn)	2015/10/28	<0.75		ug	
			Front Half Nickel (Ni)	2015/10/28	<0.50		ug	
İ			Front Half Selenium (Se)	2015/10/28	<1.0		ug	
			Front Half Silver (Ag)	2015/10/28	<0.20		ug	
1			Front Half Zinc (Zn)	2015/10/28	<5.0		ug	
4248555	5 N F	RPD - Sample/Sample Du	p Front Half Antimony (Sb)	2015/10/28	1.2		ug	30
	_		Front Half Arsenic (As)	2015/10/28	0.91		%	20
			Front Half Barium (Ba)	2015/10/28	NC		%	20
ļ			Front Half Beryllium (Be)	2015/10/28	NC		% %	20
			Front Half Cadmium (Cd)	2015/10/28	NC		%	20
			Front Half Chromium (Cr)	2015/10/28	5.0		% %	20.
			Front Half Cobalt (Co)	2015/10/28	1.7		%	20
			Front Half Copper (Cu)	2015/10/28	2.0		%	20 20
			Front Half Lead (Pb)	2015/10/28	1.8		% %	20
			Front Half Manganese (Mn)	2015/10/28	3.2		% %	20
			Front Half Nickel (Ni)	2015/10/28	1.4		%	20
			Front Half Selenium (Se)	2015/10/28	NC		%	20
			Front Half Silver (Ag)	2015/10/28	NC		%	20
			Front Half Zinc (Zn)	2015/10/28	1.2		% %	20
4248561	N_R	Matrix Spike(BEC578)	Front Half Antimony (Sb)	2015/10/28	-1.2	100	%	70 - 130
			Front Half Arsenic (As)	2015/10/28		97	%	70 - 130
			Front Half Barium (Ba)	2015/10/28		100	%	70 - 130
			Front Half Beryllium (Be)	2015/10/28		96	%	70 - 130
			Front Half Cadmium (Cd)	2015/10/28		98	%	70 - 130
			Front Half Chromium (Cr)	2015/10/28		99	%	70 - 130
			Front Half Cobalt (Co)	2015/10/28		100	%	70 - 130
			Front Half Copper (Cu)	2015/10/28		99	%	70 - 130
			Front Half Lead (Pb)	2015/10/28		99	%	70 - 130
			Front Half Manganese (Mn)	2015/10/28		100	%	70 - 130
			Front Half Nickel (Ni)	2015/10/28		98	%	70 - 130
			Front Half Selenium (Se)	2015/10/28		98	%	70 - 130
			Front Half Silver (Ag)	2015/10/28		98	%	70 - 130
			Front Half Zinc (Zn)	2015/10/28		102	%	70 - 130
4248561	N_R	Matrix Spike DUP(BEC578)		2015/10/28		99	%	70 - 130
			Front Half Arsenic (As)	2015/10/28		98	%	70 - 130
			Front Half Barium (Ba)	2015/10/28		100	%	70 - 130
			Front Half Beryllium (Be)	2015/10/28		97	%	70 - 130
			Front Half Cadmium (Cd)	2015/10/28		97	%	70 - 130
			Front Half Chromium (Cr)	2015/10/28		100	%	70 - 130
			Front Half Cobalt (Co)	2015/10/28		101	%	70 - 130
			Front Half Copper (Cu)	2015/10/28		99	%	70 - 130
			Front Half Lead (Pb)	2015/10/28		96	%	70 - 130
			Front Half Manganese (Mn)	2015/10/28		100	%	70 - 130
			Front Half Nickel (Ni)	2015/10/28		100		70 - 130
			Front Half Selenium (Se)	2015/10/28		99		70 - 130
			Front Half Silver (Ag)	2015/10/28		98		70 - 130
			Front Half Zinc (Zn)	2015/10/28		101		70 - 130
248561	N_R	MS/MSD RPD	Front Half Antimony (Sb)	2015/10/28	1.0		%	20
			Front Half Arsenic (As)	2015/10/28	1.0		%	20
			Front Half Barium (Ba)	2015/10/28	0		%	20

Mostardi Platt

Client Project #: M154005 Site Location: ROCKFORD

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Front Half Beryllium (Be)	2015/10/28	1.0		%	20
ĺ			Front Half Cadmium (Cd)	2015/10/28	1.0		%	20
			Front Half Chromium (Cr)	2015/10/28	1.0		%	20
			Front Half Cobalt (Co)	2015/10/28	1.0		%	20
			Front Half Copper (Cu)	2015/10/28	0		%	20
			Front Half Lead (Pb)	2015/10/28	3.1		%	20
			Front Half Manganese (Mn)	2015/10/28	0		%	20
			Front Half Nickel (Ni)	2015/10/28	2.0		%	20
			Front Half Selenium (Se)	2015/10/28	10		%	20
			Front Half Silver (Ag)	2015/10/28	0		%	20
			Front Half Zinc (Zn)	2015/10/28	0.99		%	20
4248561	N_R	Spiked Blank	Front Half Antimony (Sb)	2015/10/28		100	%	85 - 115
			Front Half Arsenic (As)	2015/10/28		100	%	85 - 115
			Front Half Barium (Ba)	2015/10/28		100	%	85 - 115
			Front Half Beryllium (Be)	2015/10/28		96	%	85 - 11 5
			Front Half Cadmium (Cd)	2015/10/28		97	%	85 - 115
			Front Half Chromium (Cr)	2015/10/28		101	%	85 - 115
			Front Half Cobalt (Co)	2015/10/28		102	%	85 - 11 5
			Front Half Copper (Cu)	2015/10/28		101	%	85 - 115
			Front Half Lead (Pb)	2015/10/28		102	%	85 - 115
			Front Half Manganese (Mn)	2015/10/28		102	%	85 - 11 5
			Front Half Nickel (Ni)	2015/10/28		100	%	85 - 115
			Front Half Selenium (Se)	2015/10/28		99	%	85 - 115
			Front Half Silver (Ag)	2015/10/28		101	%	85 - 11 5
			Front Half Zinc (Zn)	2015/10/28		100	%	85 - 115
4248561	N_R	Spiked Blank DUP	Front Half Antimony (Sb)	2015/10/28		100	%	85 - 115
			Front Half Arsenic (As)	2015/10/28		99	%	85 - 11 5
			Front Half Barium (Ba)	2015/10/28		99	%	85 - 11 5
			Front Half Beryllium (Be)	2015/10/28		96	%	85 - 115
			Front Half Cadmium (Cd)	2015/10/28		97	%	85 - 115
			Front Half Chromium (Cr)	2015/10/28		100	%	85 - 11 5
			Front Half Cobalt (Co)	2015/10/28		101	%	85 - 115
			Front Half Copper (Cu)	2015/10/28		100	%	85 - 115
			Front Half Lead (Pb)	2015/10/28		100	%	85 - 115
			Front Half Manganese (Mn)	2015/10/28		101	%	85 - 115
			Front Half Nickel (Ni)	2015/10/28		99	%	85 - 115
			Front Half Selenium (Se)	2015/10/28		99	%	85 - 115
			Front Half Silver (Ag)	2015/10/28		101	%	85 - 115 85 - 115
			Front Half Zinc (Zn)	2015/10/28		100	%	85 - 115
248561	N R	RPD	Front Half Antimony (Sb)	2015/10/28	0.46	100	%	20
	-		Front Half Arsenic (As)	2015/10/28	0.52		%	20
			Front Half Barium (Ba)	2015/10/28	0.31		%	20
			Front Half Beryllium (Be)	2015/10/28	0.039		%	20
			Front Half Cadmium (Cd)	2015/10/28	0.055		%	20
			Front Half Chromium (Cr)	2015/10/28	1.5		%	
			Front Half Cobalt (Co)	2015/10/28	0.80		% %	20
			Front Half Copper (Cu)	2015/10/28	0.96		%	20 20
			Front Half Lead (Pb)	2015/10/28	1.4		% %	
			Front Half Manganese (Mn)	2015/10/28	1.4			20
			Front Half Nickel (Ni)	2015/10/28	0.69		%	20
			Front Half Selenium (Se)	2015/10/28	0.40		%	20
			outchidin (Sc)	E013/10/20	0.70		%	20
			Front Half Silver (Ag)	2015/10/28	0.83		%	20

Mostardi Platt

Client Project #: M154005 Site Location: ROCKFORD

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC				Date		%		
Batch_	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
4248561	N_R	Method Blank	Front Half Antimony (Sb)	2015/10/28	<0.40	<u> </u>	ug	
			Front Half Arsenic (As)	2015/10/28	< 0.40		ug	
			Front Half Barium (Ba)	2015/10/28	4.3,		ug	
ł					RDL=3.0		_	
			Front Half Beryllium (Be)	2015/10/28	< 0.10		ug	
			Front Half Cadmium (Cd)	2015/10/28	<0.10		ug	1
			Front Half Chromium (Cr)	2015/10/28	< 0.30		ug	
			Front Half Cobalt (Co)	2015/10/28	< 0.10		ug	
			Front Half Copper (Cu)	2015/10/28	<2.0		ug	
			Front Half Lead (Pb)	2015/10/28	<0.20		ug	
			Front Half Manganese (Mn)	2015/10/28	<0.75		ug	
			Front Half Nickel (Ni)	2015/10/28	< 0.50		ug	
			Front Half Selenium (Se)	2015/10/28	<1.0		ug	
			Front Half Silver (Ag)	2015/10/28	<0.20		ug	
			Front Half Zinc (Zn)	2015/10/28	6.3,		ug	
					RDL=5.0		-	i
4248561	N_R	RPD - Sample/Sample Dup	Front Half Antimony (Sb)	2015/10/28	0.80		%	20
			Front Half Arsenic (As)	2015/10/28	NC		%	20
			Front Half Barium (Ba)	2015/10/28	NC		%	20
			Front Half Beryllium (Be)	2015/10/28	NC		%	20
			Front Half Cadmium (Cd)	2015/10/28	4.5		%	20
			Front Half Chromium (Cr)	2015/10/28	NC		%	20
			Front Half Cobalt (Co)	2015/10/28	NC		%	20
			Front Half Copper (Cu)	2015/10/28	0.92		%	20
			Front Half Lead (Pb)	2015/10/28	0.30		%	20
			Front Half Manganese (Mn)	2015/10/28	NC		%	20
			Front Half Nickel (Ni)	2015/10/28	2.3		%	20
			Front Half Selenium (Se)	2015/10/28	NC		%	20
			Front Half Silver (Ag)	2015/10/28	NC		%	20
			Front Half Zinc (Zn)	2015/10/28	NC		%	20

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

Mostardi Platt

Client Project #: M154005 Site Location: ROCKFORD

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Ralph Siebert, Operations Manager - Inorganic Analyses

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

October 30, 2015

Jenna Ghanma Mostardi Platt 888 Industrial Drive Elmhurst, IL 60123

Enclosed is your final report for ERA's Stationary Source Audit Sample (SSAS) Program. Your final report includes an evaluation of all results submitted by your laboratory to ERA.

Data Evaluation Protocols: All analytes in ERA's SSAS Program have been evaluated comparing the reported result to the acceptance limits generated using the criteria contained in the TNI SSAS Table.

For any "Not Acceptable" results, please contact your state regulator for any corrective action requirements.

Thank you for your participation in ERA's SSAS Program. If you have any questions, please contact our Proficiency Testing Department at 1-800-372-0122.

Sincerely,

David Kilhefner Quality Officer

cc: Project File Number 0929150

Recipient Type	Report Recipient	Contact	Project ID
Agency	IL-EPA Region 5 (SSAS) 77 W Jackson Blvd AE-17J Chicago, IL 60604 USA	Dakota Prentice prentice.dakota@epa.gov Phone: 312-886-6761	
Facility	Behr Iron And Metal 1100 Seminary St Rockford, IL 61104 USA	John Pinion jpinion@rka-inc.com Phone: 630-393-9000	
Lab	Maxxam Analytics Inc 6740 Campobello Rd Mississauga, ON L5N 2L8 Canada	Clayton Johnson Sr. Project Manager cjohnson@maxxam.ca Phone: (905) 817-5769	
Tester	Mostardi Platt 888 Industrial Drive Elmhurst, IL 60123 USA	Jenna Ghanma jghanma@mp-mail.com Phone: 630-993-2685	Behr M154005

092915O Laboratory Exception Report

A Waters Company

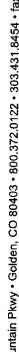
Clayton Johnson Sr. Project Manager Maxxam Analytics Inc 6740 Campobello Rd Mississauga, ON L5N 2L8 (905) 817-5769

EPA ID: ERA Customer Number:

Not Reported M748564

Evaluation Checks

There are no values reported with < where the assigned value was greater than 0.


Not Acceptable Evaluations

There were no Not Acceptable evaluations for this study.

Page 1 of 1 Project #: 0929150

Final Report Results For Laboratory Maxxam Analytics Inc

Page 1 of 4 (#)

SSAP Evaluation Report

Project Number: 0929150

ERA Customer Number: M748564

Laboratory Name: Maxxam Analytics Inc

Inorganic Results

Page 2 of 4 (Project # : 0929150

092915O Evaluation Final Complete Report

A Waters Company

Clayton Johnson Sr. Project Manager Maxxam Analytics Inc 6740 Campobello Rd Mississauga, ON L5N 2L8 (905) 817-5769

EPA ID: ERA Customer Number:

Not Reported M748564

r –	
Analyst Name	
Analysis Date	
Method Description	
Performance Evaluation	3
Acceptance Limits	
Assigned Value	
Reported Value	
Units	
Analyte	
Analyte Code	

8	
Ę	
35	
29	
9	
:5	
)ate	ĺ
グ	
3	
Š	
Š.	
29	i
60	
ŧ	
2	
2	ı
#	ı
g	I
こ	ı
å	ł
5	I
e	l
-	l
S	I
ē	l
SSAP Metals on Filter Paper (cat# 1425, lot# 0929150) Study Dates: 09/29/15 - 10/3	ĺ
Ţ	l
2	l

Analyte Code	Analyte	Units	Reported Value	Assigned Value	Acceptance Limits	Performance Evaluation	Method Description	Anatysis Date	Analyst Name	
SSAP Me	SSAP Metals on Filter Paper (cat# 1425, lot# 0929150) Study Dates: 09/29/15 - 10/30/15	2915O) Study Date	s: 09/29/15	- 10/30/15						
1005	Antimony	µg/Filter	32.2	31.9	23.9 - 39.9	Acceptable	EPA Method 29 2000	10/28/2015	*	
1010	Arsenic	µg/Filter	26.4	27.3	20.5 - 34.1	Acceptable	EPA Method 29 2000	10/28/2015		
1015	Barium .	µg/Filter	31.4	27.2	20.4 - 34.0	Acceptable	EPA Method 29 2000	10/28/2015		
1020	Beryllium	µg/Filter	12.5	13.6	10.2 - 17.0	Acceptable	EPA Method 29 2000	10/28/2015		
1030	Cadmium	µg/Filter	13.2	13.6	10.9 - 16.3	Acceptable	EPA Method 29 2000	10/28/2015		
1040	Chromium	µg/Filter	21.0	20.4	16.3 - 24.5	Acceptable	EPA Method 29 2000	10/28/2015		
1050	Cobalt	µg/Filter	14.6	13.6	10.2 - 17.0	Acceptable	EPA Method 29 2000	10/28/2015		
1055	Copper	µg/Filter	14.2	13.6	10.2 - 17.0	Acceptable	EPA Method 29 2000	10/28/2015		
1075	Lead	µg/Filter	27.4	27.2	218-326	Acceptable	EPA Method 29 2000	10/28/2015		
1090	Manganese	µg/Filter	14.5	13.6	9.52 - 17.7	Acceptable	EPA Method 29 2000	10/28/2015		
1105	Nickel	µg/Fitter	27.1	27.2	19.0 - 35.4	Acceptable	EPA Method 29 2000	10/28/2015		
1140	Selenium	µg/Filter	26.9	27.2	19.0 - 35.4	Acceptable	EPA Method 29 2000	10/28/2015		
1150	Silver	µg/Filter	40.8	40.8	28.6 - 53.0	Acceptable	EPA Method 29 2000	10/28/2015	X 47	
1165	Thallium	µg/Filter		40.8	30.6 - 51.0	Not Reported				
1190	Zmc	µg/Filter	29.0	27.2	19 0 - 35.4	Acceptable	EPA Method 29 2000	10/28/2015		

Page 3 of 4 (Project # : 0929150

0929150 Evaluation Final Complete Report

A Waters Company

Clayton Johnson Sr. Project Manager Maxxam Analytics Inc 6740 Campobello Rd Mississauga, ON L5N 2L8 (905) 817-5769

EPA ID: ERA Customer Number:

Not Reported M748564

	Analyst Nan
	Analysis Date
	Method Description
	Performance Evaluation
1	Acceptance Limits
	Assigned Value
	Reported Value
	Units
	Analyte
	TNI Analyte Code

Analyst Name				rawj A												
Analysis Date		10/27/2015	10/27/2015	10/27/2015	10/27/2015	10/27/2015	10/27/2015	10/27/2015	10/27/2015	10/27/2015	10/27/2015	10/27/2015	10/27/2015	10/27/2015		10/27/2015
Method Description	T to	EFA Method 29 2000	EPA Method 29 2000		EPA Method 29 2000											
Performance Evaluation		Acceptable	Not Reported	Acceptable												
Acceptance Limits	0/15	1.28 - 2.12	0.671 - 1.12	0.788 - 1.31	1.01 - 1.69	0.896 - 1.34	1.94 - 2.90	131-219	0.915 - 1.52	0.521 - 0.869	0.244 - 0.408	0.286 - 0.428	1.35 - 2.25	0.614-1.02	1.19 - 1.99	123-205
Assigned Value	29/15 - 10/3	1.70	968.0	1.05	1.35	1.12	2.42	1.75	1.22	0.695	0.326	0.357	1.80	0.818	1.59	1.64
Reported Value	/ Dates: 09/	1.78	0.902	1.10	1.45	1.17	2.51	1 96	1.29	0.719	0.343	0.372	1.81	0.878		1.74
Units	1426, lot# 092915O) Study Dates: 09/29/15 - 10/30/15	ug/mL	hg/mL	Jm/gn	hg/mL	ma/mr	hg/mL	Jw/6rl	Jm/grl	_ շա/6rl	Jш/вп	դա/ճո	hg/mL	¬լա/6п	hg/mL	Tw/brl
Analyte	SSAP Metals in Impinger Solution (cat# 1426, Ic	Antimony	Arsenic	Barum	Beryflium	Cadmium	Chromium	Cobatt	Copper	Lead	Manganese	Nickel	Selenium	Silver	Thallium	Zinc
TNI Analyte Code	SSAP Me	1005	1010	1015	1020	1030	1040	1050	1055	1075	1090	1105	1140	1150	1165	1190

Page 4 of 4 (

Rk & Associates, Inc.

Client: Facility:

Behr Iron and Metal Rockford Facility M154005

Project Number:

Test Location:

Foundry Sand Seperator

Test Method:

5/29

Filterable Analysis Date:

10/14/2015

Filter Drying Temp °F: Ambient-Des. 24 hrs Analyst: JMG

Analyst:

	Description	Sample Date	ID#	vol. (ml)	Initial Weight (grams)	Final Weight (grams)	Net Weight Gain (grams)
		Filtera	ble Partic	culate			
Test No. 1		10/6/2015					
Source Condition:	Normal						
M5 Filter	<u>-</u>	.	8754		0.4453	2.2531	1.8078
Acetone Wash (Teflon Bag	gies)		574	54 ml	1.3122	1.5704	0.2582
Acetone Blank							0.0002
Total Front Half Weight							2.0658
<u>-</u>		Filtera	ble Partic	culate			
Test No. 2		10/6/2015					
Source Condition:	Normal				l į		
M5 Filter	_	<u>. </u>	8753		0.4413	1.5678	1.1265
Acetone Wash (Teflon Bag	agies)		575	44 ml	1.3151	1.5588	0.2437
Acetone Blank							0.0002
Total Front Half Weight							1.3700
		Filtera	ble Partic	culate			
Test No. 3		10/6/2015					
Source Condition:	Normal						
M5 Filter		·	8719		0.4371	1.1156	0.6785
Acetone Wash (Teflon Bag	agies)		576	65 ml	1.3310	1.5405	0.2095
Acetone Blank							0.0003
Total Front Half Weight		· · · · · · · · · · · · · · · · · · ·					0.8877
<u></u>	•	Reagent	Blank St	ummary		_	<u>. </u>
Acetone Wash (Teflon Bag	ogies)		569	100 ml	1.3126	1,3130	0.0004

Client:

Rk & Associates, Inc.

Facility: Project Number: Test Location:

Behr Iron and Metal Rockford Facility

M154005

Northwest Baghouse Gas Cooler Inlet

Test Method: Filterable Analysis Date: 5/29 10/14/2015 Filter Drying Temp °F: Ambient-Des. 24 hrs

Analyst:

JMG

Descr	iption	Sample Date	ID#	vol. (ml)	Initial Weight (grams)	Final Weight (grams)	Net Weight Gai (grams)
		Filtera	ble Partic	ulate			
		10/6/2015		_			
Test No. 1	Normal						
Source Condition:	Norman					_	
			8758		0.4418	0.4687	0.0269
M5 Filter			577	38 ml	1.3485	1.3633	0.0148
Acetone Wash (Teflon Baggies)							0.0002
Acetorie Blank							0.0415
Total Front Half Weight		Eilhorn	ble Partic	ulate			
		10/6/2015		niare	 -		
Test No. 2		10/6/2015					
Source Condition:	Normal				ļ <u></u>		
			8757		0.4430	0.4666	0.0236
M5 Filter				32 mi	1.3338	1.3390	0.0052
Acetone Wash (Teflon Baggies)			578	32 mi	1.5550	1.0000	0,0001
Acetone Blank							0.0287
Total Front Half Weight							
			able Partic	ulate			T
Test No. 3	<u> </u>	10/6/2015					
Source Condition:	Normal						
		·			0.4406	0.4453	0.0047
M5 Filter			8759		0.4406	1.3554	0.0096
Acetone Wash (Teflon Baggies)			579	28 ml	1.3458	1.0004	0.0001
Acetone Blank							0.0142
Total Front Half Weight							0.0142
1000110001000		Reagen	t Blank St			10100	0.0004
Acetone Wash (Teflon Baggies)			569	100 ml	1.3126	1.3130	1 0.0004

Client:

Rk & Associates, Inc.

Facility:

Behr Iron and Metal Rockford Facility M154005

Project Number:

Test Location:

Northwest Baghouse Outlet Stack

Test Method:

5/29 Filterable Analysis Date: 10/14/2015 Filter Drying Temp °F: Ambient-Des. 24 hrs Analyst: JMG

D	escription	Sample Date	ID#	vol. (ml)	initial Weight (grams)	Final Weight (grams)	Net Weight Gain (grams)
		Filtera	ble Partic	ulate			
Test No. 1		10/6/2015					
Source Condition:	Normal						
M5 Filter			8752		0.4423	0.4495	0.0072
Acetone Wash (Teflon Baggi	es)		571	86 ml	1.2952	1.2994	0.0042
Acetone Blank							0.0003
Total Front Half Weight							0.0111
		Filtera	ble Partic	ulate			
Test No. 2		10/6/2015				-	
Source Condition:	Normal						
M5 Filter		<u> </u>	8755		0.4395	0.4410	0.0015
Acetone Wash (Teflon Baggi	es)		572	32 ml	1.3688	1.3787	0.0099
Acetone Blank							0.0001
Total Front Half Weight							0.0113
		Filtera	ble Partic	ulate			
Test No. 3		10/6/2015					
Source Condition:	Normal						
M5 Filter		<u> </u>	8736		0.4410	0.4443	0.0033
Acetone Wash (Teflon Baggi	es)		573	45 ml	1.3502	1.3587	0.0085
Acetone Blank							0.0002
Total Front Half Weight							0.0116
		Reagent	Blank Su			-	
Acetone Wash (Teflon Baggi	es)		569	100 ml	1.3126	1.3130	0.0004

Appendix E- Reference Method Test Data (Computerized Sheets)

Client:	F	Rk & Associates, Ind) .
Facility:	Behr Iror	and Metal Rockfor	d Facility
Test Location:	Fo	undry Sand Sepera	tor
Project #:		M154005	
Test Method:		5/29	
Test Engineer:		MLIP	
Test Technician:		NCC	
	<u>R1</u>	<u>R2</u>	<u>R3</u>
Temp ID:	CM33	CM33	CM33
Meter ID:	CM33	CM33	CM33
Pitot ID:	256	256	256
Nozzle Diameter (Inches):	0.310	0.310	0.300
Meter Calibration Factor (Y):	1.003	1.003	1.003
Meter Orifice Setting (Delta H):	1.748	1.748	1.748
Nozzle Kit ID Number and Material:	Glass #7	Glass #7	Glass #7
Pitot Tube Coefficient:		0.840	
Probe Length (Feet):		3.0	
Probe Liner Material:		Glass	
Sample Plane:		Horizontal	
Port Length (Inches):		0.00	
Port Size (Diameter, Inches):		6.00	
Port Type:		Hole in duct	
Duct Shape:		Circular	
Diameter (Feet):		1.3333	
Duct Area (Square Feet):		1.396	
Handan Diameters		\ <u>-</u>	
Upstream Diameters:		>.5 >2	
Downstream Diameters:		>2 2	
Number of Ports Sampled:		12	
Number of Points per Point:		5.0	
Minutes per Point:		5.0	
Minutes per Reading: Total Number of Traverse Points:		3.0 24	
		24 120	
Test Length (Minutes):		Anderson Box	
Train Type: Source Condition:		Normal	
Servomex Serial Number:		01440D1/3935	
		S10-37	
Moisture Balance ID: # of Runs		310-37	
# of Runs		S	

Client: Rk & Associates, Inc.

Facility: Behr Iron and Metal Rockford Facility
Test Location: Foundry Sand Seperator

Test Method: 5/29

Source Condtion:		Normal Run 1	Normal Run 2	Normal Run 3
Identify Analyte: Molecular Weight: ug (net) collected:	Antimony (Sb) 121.75	ADL 241	ADL 219.35	ADL 137
Identify Analyte: Molecular Weight: ug (net) collected:	Arsenic (As) 74.92	ADL 12	ADL 11.8	ADL 7.3
Identify Analyte: Molecular Weight: ug (net) collected:	Barium (Ba) 137.33	ADL 109.9	ADL 105.5	ADL 67.3
Identify Analyte: Molecular Weight: ug (net) collected:	Beryllium (Be) 9.01	BDL 0.55	BDL 0.55	BDL 0.55
Identify Analyte: Molecular Weight: ug (net) collected:	Cadmium (Cd) 112.4	ADL 10.847	ADL 9.441	ADL 9.952
Identify Analyte: Molecular Weight: ug (net) collected:	Chromium (Cr) 51.99	ADL 73.75	ADL 52.05	ADL 42.39
Identify Analyte: Molecular Weight: ug (net) collected:	Cobalt (Co) 58.93	ADL 57.964	ADL 40.031	ADL 24.379
Identify Analyte: Molecular Weight: ug (net) collected:	Copper (Cu) 63.55	ADL 30602.2	ADL 17002.8	ADL 10105.3
Identify Analyte: Molecular Weight: ug (net) collected:	Lead (Pb) 207.19	ADL 20901.22	ADL 16302.75	ADL 10500.84
Identify Analyte: Molecular Weight: ug (net) collected:	Manganese (Mn) 54.94	ADL 825.59	ADL 581.19	ADL 359.99
Identify Analyte: Molecular Weight: ug (net) collected:	Nickel (Ni) 58.71	ADL 332.8	ADL 229.84	ADL 176.46

Client: Rk & Associates, Inc. Facility: Behr Iron and Metal Rockford Facility

Test Location: Foundry Sand Seperator

Test Method: 5/29

Source Condtion:		Normal Run 1	Normal Run 2	Normal Run 3
Identify Analyte: Molecular Weight: ug (net) collected:	Selenium (Se) 78.96	DLL 5.65	DLL 17.7	BDL 5.5
Identify Analyte: Molecular Weight: ug (net) collected:	Silver (Ag) 107.87	ADL 11.96	ADL 8.12	ADL 9.6
Identify Analyte: Molecular Weight: ug (net) collected:	Zinc (Zn) 65.37	ADL 8991.9	ADL 7762.4	ADL 4913.1

Isokinetic V5.0 2/3/14 Mostardi Platt

Run 1-Method 5/29

Client: Rk & Associates, Inc.

Facility: Behr Iron and Metal Rockford Facility

Test Location: Foundry Sand Seperator

Source Condition: Normal

Date:

10/6/15

Start Time: **End Time:** 11:40 13:52

ongition; Normai					
DRY GAS METER C	ONDITIONS		STACK CONDITIONS		
ΔH:	2.16	in, H ₂ O	Static Pressure	-2.00	in. H₂O
Meter Temperature, Tm:	64.6	.	Flue Pressure (Ps):	29.25	in. Hg. abs.
Sart ΔP :	0.472	in. H₂O	Carbon Dioxide:	0.00	%
Stack Temperature, Ts:	67.2	°F	Oxygen:	20.90	%
Meter Volume, Vm:	97.682	ft ³	Nitrogen:	79.10	%
Meter Volume, Vmstd:	97.410	dscf	Gas Weight dry, Md:	28.836	lb/lb mole
Meter Volume, Vwstd:	1.163	wscf	Gas Weight wet, Ms:	28.708	lb/lb mole
Isokinetic Variance:	99.4	%1	Excess Air:	275	%
ISORIII O VAITATIOS.	5511	,	Gas Velocity, Vs:	26.842	fps
Test Length	120.00	in mins.	Volumetric Flow:	2,249	acfm
Nozzle Diameter	0.310	in inches	Volumetric Flow:	2,176	dscfm

MOISTURE DETERMINATION

Initial Impinger Content: 2005.7 ml Final Impinger Content: 2005.9 ml Impinger Difference:

0.2 ml

in Hg

Silica Difference:

Silica Initial Wt. Silica Final Wt.

833.3 857.8 24.5

Volumetric Flow:

Fo Validity:

grams grams grams

2,202

#DIV/0!

Total Water Gain:

Barometric Pressure

Calculated Fo:

24.7

29.40

#DIV/0!

Moisture, Bws:

0.012

Supersaturation Value, Bws:

0.023

scfm

		Velocity	Orifice	Actual	Stack	Meter	Temp		Collected	Point
Port- Point No.	Clock Time	Head ∆p in. H2O	∆H in. H2O	Meter Vol. ft³	Temp °F	Inlet °F	Outlet °F	Sqrt. _∆p	Vol.	Vel ft/sec
1-1	11:40:00	0.20	1.88	15.230	64	61	62	0.447	3.850	25.445
2	11:45:00	0.22	2.08	19.080	68	62	63 _	0.469	4.120	26.687
3	. 11:50:00	0.20	1.88	23.200	63	63	63	0.447	3.790	25.445
4	11:55:00	0.20	1.88	26.990	63	63	63	0.447	3.830	25,445
5	12:00:00	0.18	1.70	30.820	69	63	63	0.424	3.490	24.139
6	12:05:00	0.18	1.70	34.310	72	65	63	0.424	3.830	24.139
7	12:10:00	0.25	2.36	38.140	79	64	63	0.500	4.310	28.448
8	12:15:00	0.28	2.64	42.450	82	65	64	0.529	4.530	30.107
9	12:20:00	0.24	2.26	46.980	82	65	64	0.490	4.230	27.873
10	12:25:00	0.28	2.64	51.210	80	66	64	0.529	4.400	30.107
	12:30:00	0.45	4.25	55.610	80	67	64	0.671	5.670	38.167
11	12:35:00	0.45	4.25	61.280	80	66	64	0.671	5.953	38.167
12	12:40:00	0.45	4.20	67.233						
0.4	12:52:00	0.16	1.51	67.233	70	64	65	0.400	3.497	22.758
2-1	12:57:00	0.18	1.70	70.730	64	65	65	0.424	3.380	24.139
	13:02:00	0.18	1.70	74.110	64	66	64	0.424	4.070	24.139
3	13:07:00	0.15	1.41	78.180	60	65	64	0.387	3.340	22.036
4	13:12:00	0.13	1.13	81.520	57	67	62	0.346	2.970	19.709
5	13:17:00	0.12	1,41	84.490	58	67	63	0.387	3.450	22.036
6	13:22:00	0.20	1.88	87.940	59	67	65	0.447	3.870	25.445
7	13:27:00	0.30	2.83	91.810	59	67	65	0.548	4.520	31.163
8	13:32:00	0.24	2.26	96.330	59	67	65	0.490	4.150	27.873
9	13:37:00	0.30	2.83	100.480	60	68	65	0.548	4.840_	31.163_
10	13:42:00	0.30	1.70	105.320	60	68	65	0.424	4.010	24.139
11	13:42:00	0.18	1.88	109.330	60	69	65	0.447	3.582	25.445
12	13:47:00	0.20	1.00	112,912	1 2					<u> </u>
	2:00:00			97.682	2	65.4	63.9		97.68	2

63.9 97.682 65.4 Total 2:00:00 0.472 2.16 67.2 64.6 Average 0.346 61.0 57.0 1.13 Min 0.671 82.0 69.0 4.25 Max

Isokinetic V5.0 2/3/14

Run 2-Method 5/29

Client: Rk & Associates, Inc.

I Rockford Facility Facility: Behr Iron and Me

Test Location: Foundry Sand Se

Source Condition: Normal

Date:

10/6/15

Start Time:

14:40

	erator	End Time:	16	5:52
TIONS		STACK CONDITIONS		
41	In. H₂O	Static Pressure	-2.00	in. H ₂
1.5	°F	Flue Pressure (Ps):	29.25	in. H
	,		0.00	0/

DRY GAS METER O	CONDITIONS	STACK CONDITIONS	
ΔH:	2.41	In. H ₂ O	Static Pressure -2.00 in. H ₂ O
Meter Temperature, Tm:	71.5	•F	Flue Pressure (Ps): 29.25 in. Hg. abs.
Sart AP:	0.486	In. H ₂ O	Carbon Dioxide: 0.00 %
Stack Temperature, Ts:	66.5	°F	Oxygen: 20.90 %
Meter Volume, Vm:	103.146	ft ³	Nitrogen: 79.1 %
Meter Volume, Vmstd:	101.603	dscf	Gas Weight dry, Md: 28.836 lb/lb mole
Meter Volume, Vwstd:	1.192	wscf	Gas Weight wet, Ms: 28.710 lb/lb mole
Isokinetic Variance:	100.7	%1	Excess Air:
ISOMITEDO VALIANOS.	100.7		Gas Velocity, Vs: 27.603 fps
Test Length	120.00	in mins.	Volumetric Flow: 2,312 acfm
Nozzle Diameter	0.310	in inches	Volumetric Flow: 2,241 dscfm
Barometric Pressure	29.40	in Hg	Volumetric Flow: 2,267 scfm
Calculated Fo:	#DIV/0!		Fo Validity: #DIV/0!
Calculated 1 0.	# DIV 70.	MOISTU	RE DETERMINATION
Initial Impinger Content:	2102.3	ml	Silica Initial Wt. 859.1 grams
Fire I Impiesor Content:	2100 0	ml	Silica Final Wt. 877.7 grams

Silica Final Wt. Final Impinger Content: 2109.0 ml 18.6 grams Silica Difference: Impinger Difference: ml

25.3 Total Water Gain:

Moisture, Bws:

0.012

Supersaturation Value, Bws:

0.022

		Velocity	Orifice	Actual	Stack	Meter	r Temp		Collected	Point
Port- Point No.	Clock Time	Head ∆p in. H2O	∆H in. H2O	Meter Vol. ft ³	Temp °F	inlet °F	Outlet °F	Sqrt.	Vol.	Vel ft/sec
		0.18	1.72	114.905	67	69	71	0.424	3.795	24.122
1-1	14:40:00	0.16	1.52	118,700	68	69	71	0.400	3.620	22.742
2	14:45:00	0.15	1.43	122,320	64	70	72	0.387	3.340	22.020
3	14:50:00	0.15	1.43	125.660	64	70	72	0.387	3.280	22.020
4	14:55:00		0.95	128.940	65	70	71	0.316	3.030	17.979
5	15:00:00	0.10	1.14	131.970	65	71	70	0.346	2.850	19.695
66	15:05:00	0.12	2.10	134.820	66	71	70	0.469	4.340	26.668
7	15:10:00	0.22	3.34	139.160	66	71	70	0.592	5.060	33.636
8	15:15:00	0.35		144.220	66	72	71	0.592	5.230	33.636
9	15:20:00	0.35	3.34	149.450	67	72	71	0.574	5.060	32.661
10	15:25:00	0.33	3.15	154.510	67	72	70	0.671	5.870	38.140
11	15:30:00	0.45	4.30	160.380	67	73	70	0.656	5.800	37.283
12	15:35:00	0.43	4,10	166.180	67					
	15:40:0 <u>0</u>				73	71	73	0.387	3.530	22.020
2-1	15:52:00	0.15	1,43	166.180	73	72	72	0.447	4.010	25.427
2	15:57:00	0.20	1.91	169,710		72	72	0.447	3.800	25.427
<u> </u>	16:02:00	0.20	1.91	173.720	71_	72	72	0.424	3.830	24.122
4	16:07:00	0.18	1.72	177.520	70	72	72	0.424	4.060	24.122
5	16:12:00	0.18	1.91	181.350	68	72	72	0.374	2.980	21,273
6	16:17:00	0.14	1.33	185.410	66		72	0.387	3.320	22.020
7	16:22:00	0.15	1.43	188.390	65	72	72	0.400	4.070	22.742
8	16:27:00	0.16	1.52	191.710	63	72		0.424	3.770	24.122
9	16:32:00	0.18	1.72	195.780	63	72	72	0.700	6.260	39.799
10	16:37:00	0.49	4.68	199.550	63	72	72		6.140	40.603
11	16:42:00	0.51	4.87	205.810	64	74	72	0.714	6.101	40.203
12	16:47:00	0.50	4.77	211.950	64	73	72	0.707	0,101	70.203
	16:52:00		<u> </u>	218.051		<u> </u>			103.14	
Total	2:00:00			103.146	6	71.	.5 71.4		103.14	u

71.4 71.5 103.146 2:00:00 Total 0.486 71.5 66.5 2.41 Average 0.316 63.0 69.0 0.95 Min 0.714 4.87 74.0 Max

Isokinetic V5.0 2/3/14

Run 3-Method 5/29

Client: Rk & Associates, Inc.

Facility: Behr Iron and Metal Rockford Facility

Test Location: Foundry Sand Seperator

Date:

10/6/15

Start Time: **End Time:**

Volumetric Flow:

Fo Validity:

17:40 19:51

Source Condition: Normal					
DRY GAS METER C	ONDITIONS		STACK CONDITIONS	·	
ΔH:	1,68	In. H ₂ O	Static Pressure	-2.00	in. H₂O
Meter Temperature, Tm:	70.3	°F	Flue Pressure (Ps):	29.25	in. Hg. abs.
Sart ΔP :	0.467	in, H₂O	Carbon Dioxide:	0.00	%
Stack Temperature, Ts:	50.3	°F	Oxygen:	20.90	%
Meter Volume, Vm:	87.476	ft ³	Nitrogen:	79.1	%
Meter Volume, Vmstd:	86.208	dscf	Gas Weight dry, Md:	28.836	lb/lb mole
Meter Volume, Vwstd:	1.404	wscf	Gas Weight wet, Ms:	28.695	lb/lb male
Isokinetic Variance:	93.5	%1	Excess Air:	444	%
ISONITERIO VALIBITOC.	50.0	,•.	Gas Velocity, Vs:	26.149	fps
Test Length	120.00	in mins.	Volumetric Flow:	2,191	acfm
Nozzle Diameter	0.300	in inches	Volumetric Flow:	2,187	dscfm

MOISTURE DETERMINATION

Silica Initial Wt. 839.6 grams Initial Impinger Content: 2016.8 ml Silica Final Wt. 856.5 grams Final Impinger Content: 2029.7 ml Silica Difference: 16.9 grams Impinger Difference: 12.9 ml

Total Water Gain:

Nozzle Diameter

Calculated Fo:

Barometric Pressure

29.8

29.40

#DIV/0!

in Hg

Moisture, Bws:

0.016

Supersaturation Value, Bws:

2,216

#DIV/0!

0.013

scfm

		Velocity	Orlfice	Actual	Stack	Meter '	Temp		Collected	Point
Port-	Clock	Head Ap	$\Delta \mathbf{H}$	Meter Vol.	Temp °F	Inlet °F	Outlet °F	Sqrt. ∆p	Vol. ft³	Vel ft/sec
Point No.	Time	in, H2O	in. H2O			70	72	0.458	4.036	25.659
1-1	17:40:00	0.21	1.93	221.074	64	70	72	0.469	3.680	26,263
2	17:45:00	0.22	2.02	225.110	55		71	0.458	4.130	25.659
3	17:50:00	0.21	1.93	228.790	48	72	71	0.458	3.980	25,659
4	17:55:00	0.21	1.93	232.920	49	73		0.447	3.870	25.041
5	18:00:00	0.20	1.83	236.900	49	73	70		3.650	23.756
6	18:05:00	0.18	1.65	240.770	49	73	70	0.424	3.600	23.756
7	18:10:00	0.18	1.65_	244.420	49	74	72	0.424	4.440	28.551
8	18:15:00	0.26	2.38	248.020	49	74	72	0.510		83.989
9	18:20:00	2.25	2.29	252,460	49	73	71	1.500	4.250	
10	18:25:00	0.11	1.01	256.710	49	73	71	0.332	2.940	18.571
11	18:30:00	0.15	1.37	259.650	49	73	71	0.387	2.950	21.686
12	18:35:00	0.14	1.28	262.600	49	73	70	0.374	3.280	20.951
	18:40:00			265.880						
2-1	18;51:00	0.17	1.56	265.880	50	69	69	0.412	3.620	23.086
2	18:56:00	0.14	1.28	269.500	50	69	68	0.374	3.210	20.951
3	19:01:00	0.15	1.37	272.710	50	70	69	0.387	3.310	21.686
4	19:06:00	0.14	1.28	276.020	50	70	69	0.374	3.390	20.951
5	19:11:00	0.14	1.28	279.410	50	70	69	0.374	2.940	20.951
	19:16:00	0.15	1.37	282.350	50	70	69	0.387	3.510	21.686
7	19:21:00	0.26	2.29	285.860	50	70	69	0.510	4.460	28.551
	19:26:00	0.25	2.29	290.320	50	69	67	0.500	4.430	27.996
8	19:31:00	0.11	1.01	294.750	50	69	67	0.332	2.690	18.571
9	19:31:00	0.22	2.02	297.440	50	69	67	0.469	3.980	26.263
10		0.22	1.93	301.420	50	69	66	0.458	3.840	25.659
11	19:41:00	0.21	1.37	305.260	50	69	66	0.387	3.290	21.686
12	19:46:00	0.15	1.37	308.550	† <u> </u>					<u> </u>
Total	19:51:00			87,476	'	71.0	69.5		87.47	6

69.5 71.0 87.476 2:00:00 Total 0.467 50.3 70.3 1.68 Average 66.0 0.332 48.0 1.01 Min 1.500 2.38 74.0 Max

Client: Facility: Test Location: Project #: Test Method: Test Engineer: Test Technician:	Behr Iror	Rk & Associates, Inc. n and Metal Rockford st Baghouse Gas Coo M154005 5/29 BRS DJK	oler Inlet
Temp ID: Meter ID: Pitot ID: Nozzle Diameter (Inches): Meter Calibration Factor (Y): Meter Orifice Setting (Delta H): Nozzle Kit ID Number and Material: Pitot Tube Coefficient: Probe Length (Feet): Probe Liner Material: Sample Plane: Port Length (Inches): Port Size (Diameter, Inches): Port Type: Duct Shape:	R1 CM26 CM26 170 0.234 0.990 1.702	R2 CM26 CM26 170 0.242 0.990 1.702 Glass 1/Teflon 7 0.840 5.0 Glass Horizontal 6.00 6.00 Nipple Circular 2.75	R3 CM26 CM26 170 0.242 0.990 1.702
Duct Area (Square Feet): Upstream Diameters: Downstream Diameters: Number of Ports Sampled: Number of Points per Port: Minutes per Point: Minutes per Reading: Total Number of Traverse Points: Test Length (Minutes): Train Type: Source Condition: Servomex Serial Number: Moisture Balance ID: # of Runs		5.940 >.5 >2 2 20 3.0 3.0 40 120 Anderson Box Normal 01440D1/3935 \$10-37 3	

Client: Rk & Associates, Inc.

Facility: Behr Iron and Metal Rockford Facility Test Location: Northwest Baghouse Gas Cooler Inlet Test Method: 5/29

Test Method: Source Condtion:	5/29	Normal Run 1	Normal Run 2	Normal Run 3
Identify Analyte: Molecular Weight: ug (net) collected:	Antimony (Sb) 121.75	ADL 150	ADL 49.2	ADL 33
Identify Analyte: Molecular Weight: ug (net) collected:	Arsenic (As) 74.92	ADL 19.12	ADL 87.4	ADL 21.87
Identify Analyte: Molecular Weight: ug (net) collected:	Barium (Ba) 137.33	ADL 54.4	DLL 16.7	ADL 15.2
Identify Analyte: Molecular Weight: ug (net) collected:	Beryllium (Be) 9.01	BDL 0.55	BDL 0.55	BDL 0.25
Identify Analyte: Molecular Weight: ug (net) collected:	Cadmium (Cd) 112.4	ADL 1.513	ADL 4.212	ADL 3.162
Identify Analyte: Molecular Weight: ug (net) collected:	Chromium (Cr) 51.99	ADL 46.22	ADL 33.35	ADL 19.71
Identify Analyte: Molecular Weight: ug (net) collected:	Cobalt (Co) 58.93	ADL 44.863	ADL 21.051	ADL 11.784
Identify Analyte: Molecular Weight: ug (net) collected:	Copper (Cu) 63.55	ADL 1044.1	ADL 231.9	ADL 157.8
Identify Analyte: Molecular Weight: ug (net) collected:	Lead (Pb) 207.19	ADL 4271.74	ADL 810.67	ADL 536.71
Identify Analyte: Molecular Weight: ug (net) collected:	Manganese (Mn) 54.94	ADL 65.61	ADL 17.87	ADL 12.01
Identify Analyte: Molecular Weight: ug (net) collected:	Nickel (Ni) 58.71	ADL 466.46	ADL 469.58	ADL 202.95

Client: Rk & Associates, Inc.

Facility: Behr Iron and Metal Rockford Facility
Test Location: Northwest Baghouse Gas Cooler Inlet

Test Method: 5/29

Source Condtion:		Normal Run 1	Normal Run 2	Normal Run 3
Identify Analyte: Molecular Weight: ug (net) collected:	Selenium (Se) 78.96	DLL 5.72	BDL 5.5	DLL 3.05
Identify Analyte: Molecular Weight: ug (net) collected:	Silver (Ag) 107.87	DLL 1.1	BDL 1.1	BDL 0.5
Identify Analyte: Molecular Weight: ug (net) collected:	Zinc (Zn) 65.37	ADL 547.9	ADL 158.3	ADL 110.6

Run 1-Method 5/29

Client: Rk & Associates, Inc.

Facility: Behr Iron and Metal Rockford Facility

Test Location: Northwest Baghouse Gas Cooler Inlet

Source Condition: Normal

On: Normal
DRY GAS METER CONDITIONS
STACK CONDITIONS

ΔH:	1.51	in. H₂O	Static Pressure	-0.50	in. H ₂ O	
Meter Temperature, Tm:	67.4	°F	Flue Pressure (Ps):	29.35	in, Hg. abs.	
Sgrt ΔP:	0.702	i⊓. H₂O	Carbon Dioxide:	0.10	%	
Stack Temperature, Ts:	94.2	°F	Oxygen:	20.80	%	
Meter Volume, Vm:	78.677	ft ³	Nitrogen:	79.10	%	
Meter Volume, Vmstd:	76.881	dscf	Gas Weight dry, Md:	28.848	lb/lb mole	
Meter Volume, Vwstd:	1.083	wscf	Gas Weight wet, Ms:	28.697	lb/lb mole	
Isokinetic Variance:	94.9	%1	Excess Air:	-	%	
isomiodo (dilalio)			Gas Velocity, Vs.	40.889	fps	
Test Length	120.00	in mins.	Volumetric Flow:	14,572	acfm	
Nozzle Diameter	0.234	in inches	Volumetric Flow:	13,432	dscfm	
Barometric Pressure	29.39	in Hg	Volumetric Flow:	13,621	scfm	
Calculated Fo:	1.00	,	Fo Validity:	#N/A		

MOISTURE DETERMINATION

Silica Initial Wt. 828.0 grams Initial Impinger Content: 1955.0 Silica Final Wt. 849.8 grams Final Impinger Content: 1956.2 ml Silica Difference: 21.8 grams Impinger Difference: 1.2 ml

Total Water Gain: 23.0 Moisture, Bws: 0.014 Supersaturation Value, Bws: 0.055

		Velocity	Orlfice	Actual	Stack	Meter	Temp		Collected	Point
Port-	Clock	Head ∆p	ΔH	Meter Vol.	Temp	Inlet	Outlet	Sqrt.	Vol.	Vel
Point No.	Time	in. H2O	in. H2O	ft ³	°F	°F	°F	Δр	ft ³	ft/sec
1-1	11:40:00	1.10	2,20	32.518	90	60	60	1.049	2.522	61.088
1-2	11:43:00	1.50	3.00	35.040	91	65	65	1.225	2.960	71.335
1-3	11:46:00	1.60	3.20	38.000	89	65	65	1.265	3.075	73.675
1-4	11:49:00	0.91	1.80	41.075	90	65	65	0.954	2.310	55.562
1-5	11:52:00	0.88	1.80	43.385	100	65	65	0.938	2.245	54.639
1-6	11:55:00	0.75	1.50	45.630	107	65	65	0.866	2.070	50.442
1-7	11:58:00	0.72	1.40	47.700	107	67	66	0.849	2.040	49.423
1-8	12:01:00	0.52	1.00	49.740	109	68	66	0.721	1,720	42.001
1-9	12:04:00	0.38	0.75	51.460	112	68	66	0.616	1.465	35.905
1-10	12:07:00	0.26	0.53	52.925	95	68	66	0.510	1,230	29.699
1-11	12:10:00	. 0.28	0.57	54.155	93	69	66	0.529	1.295	30.820
1-12	12:13:00	0.30	0.61	55.450	93	69	66	0.548	1.320	31.902
1-13	12:16:00	0.29	0,60	56.770	91	69	66	0.539	1.318	31.366
1-14	12:19:00	0.30	0.61	58.088	90	69	6 6	0.548	1.327	31.902_
1-15	12:22:00	0.27	0.56	59.415	90	69	66	0.520	1.265	30.265
1-16	12:25:00	0.26	0.53	60.680	90	69	66	0.510	1.245	29.699
1-17	12:28:00	0.25	0.51	61.925	90	69	66	0.500	1.210	29.123
1-18	12:31:00	0.18	0.37	63.135	90	69	66	0.424	1.030	24.711
1-19	12:34:00	0.20	0.41	64.165	83	69	66	0.447	1.095	26.048
1-20	12:37:00	0.24	0.50	65.260	74	67	66	0.490	1.210	28.534
1-20	12:40:00	,		66.470						
2-1	12:52:00	0.72	2.50	66,470	96	67	66	0.849	2.710	49.423
2-2	12:55:00	0.88	3.10	69.180	96	67	66	0.938	2.970	54.639
2-3	12:58:00	1.00	3.50	72.150	100	68	66	1.000	3.175	58.245
2-4	13:01:00	1.10	3.80	75.325	107	68	66	1.049	3.308	61.088
2-5	13:04:00	1.10	3.80	78.633	109	68	66	1.049	3.287	61.088
2-6	13:07:00	0.94	3.20	81.920	111	69	66	0.970	3,052	56.471
2-7	13:10:00	0.71	2.50	84.972	94	69	66	0.843	2.688	49.078
2-8	13:13:00	0.66	2.30	87.660	97	70	67	0.812	2.590	47.319
2-9	13:16:00	0.63	2.20	90.250	100	70	67	0.794	2.525	46.231

10/6/15

11:40

13:52

Date:

Start Time:

End Time:

2-10	13:19:00	0.62	2.20	92.775	98	70	67	0.787	2.510	45.862
2-11	13:22:00	0.33	1,20	95.285	93	70	67	0.574	1.845	33.459
2-12	13:25:00	0.28	0.99	97.130	93	71	67	0.529	1.682	30.820
<u>2-1</u> 3	13:28:00	0.28	0.99	98.812	93	71	67	0.529	1.711	30.820
2-14	13:31:00	0.25	0.88	100.523	93	71	67	0.500	1.592	29.123
2-15	13:34:00	0.20	0.71	102.115	93	71	67	0.447	1.425	26.048
2-16	13:37:00	0.25	0.89	103.540	90	. 72	68	0.500	1.610	29.123
2-17	13:40:00	0.23	0.82	105.150	88	72	69	0.480	1.540	27.933
2-18	13:43:00	0.20	0.72	106.690	83	72	69	0.447	1.450	26.048
2-19	13:46:00	0.20	0.73	108.140	80	72	69	0.447	1.460	26.048
2-20	13:49:00	0.24	0.88	109.600	78	72	69	0.490	1.595	28.534
	13:52:00			111.195						l
Total	2:00:00			78.677		68.6	66.3		78.677	7
Average			1.51		94.2	67.4		0.702		
Min			0.37		74.0	60.0		0.424		
Max			3.80		112.0	72.0		1.265		

Mostardi Platt Isokinetic V5.0 2/3/14

Run 2-Method 5/29

Client: Rk & Associates, Inc.

Facility: Behr Iron and Metal Rockford Facility
Test Location: Northwest Baghouse Gas Cooler Inlet

Source Condition: Normal

Date: 10/6/15 Start Time: 14:40 End Time: 16:52

Source Condition: Morning.			STACK CONDITIONS	1	
DRY GAS METER C	DRY GAS METER CONDITIONS				
ΔH:	1.91	In. H₂O	Static Pressure	-0.50	in. H₂O
	75.7	°F	Flue Pressure (Ps):	29.35	in. Hg. abs.
Meter Temperature, Tm:	0.708	in. H₂O	Carbon Dioxide:	0.10	%
Sqrt ∆P:		-	Oxygen:	20.80	%
Stack Temperature, Ts:	93.6	°F	- 70	79.1	%
Meter Volume, Vm:	93.547	ft ³	Nitrogen:	-	
	90.097	dscf	Gas Weight dry, Md:	28.848	lb/lb mole
Meter Volume, Vmstd:			Gas Weight wet, Ms:	28.711	lb/lb mole
Meter Volume, Vwstd:	1.149	wscf	Excess Air:		%
Isokinetic Variance:	103.0	%l		44.400	
			Gas Velocity, Vs:	41.193	fps

14,680 acfm Volumetric Flow: in mins. 120.00 Test Length 13,563 dscfm Volumetric Flow: Nozzle Diameter 0.242 in inches scfm 13,736 Volumetric Flow: 29.39 in Hg Barometric Pressure #N/A Fo Validity: 1.00 Calculated Fo:

MOISTURE DETERMINATION

820.0 grams Silica Initial Wt. 2171.5 Initial Impinger Content: ml 838.3 grams Silica Final Wt. Final Impinger Content: 2177.6 ml 18.3 grams Silica Difference: Impinger Difference: 6.1 ml

Total Water Gain: 24.4 Moisture, Bws: 0.013 Supersaturation Value, Bws: 0.054

Point No. Clock Point No. Head Δp in, HZO AH in, HZO Metar Vol. reprint Price			Velocity	Orifice	Actual	Stack	Meter	Temp		Collected	Point
Point No. Time in, H2O n. H2O n³ ep ep ep **F Ap ft 1-1 14:40:00 1.10 3.90 11:928 96 69 69 1.049 3.352 1-2 14:43:00 0.85 3.00 15:280 96 71 69 0.922 2.950 1-3 14:46:90 0.62 2.20 21:120 96 74 70 0.787 2.530 1-5 14:52:00 1.00 3.50 23.650 92 74 70 1.000 3.225 1-6 14:55:00 0.98 3.50 26.875 92 74 71 0.990 3.195 1-7 14:56:00 0.41 1.40 3.0070 97 74 71 0.860 2.770 1-18 15:01:00 0.77 2.80 32:127 93 73 71 0.860 2.770 1-10 15:07:00 0.02 2.20		Clock	•	_	Meter Vol.	Temp	Inlet	Outlet	Sqrt.	•	Vel
1-1			•		ft³	°F	<u> </u>	°F	Δp	ft ^s	ft/sec_
1-1				3.90	11.928	96	69	69	1.049	3.352	61.043
1-2 14,45,00 0.81 2.90 18.230 95 73 70 0.900 2.890 1.4 14,46,00 0.81 2.90 18.230 96 74 70 0.787 2.530 1.4 14,49,00 0.62 2.20 21,120 96 74 70 0.787 2.530 1.5 14,55,00 1.00 3.50 23.650 92 74 70 1.000 3.225 1.5 14,55,00 0.98 3.50 28.875 92 74 71 0.990 3.195 1.7 14,56,00 0.98 3.50 28.875 92 74 71 0.990 3.195 1.7 14,56,00 0.41 1.40 30,070 97 74 71 0.640 2.057 1.8 15,01,00 0.77 2.80 32,127 93 73 71 0.877 2.828 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5					15.280	96	71	69	0.922	2.950	53.660
1-4 14-49.00 0.62 2.20 21.120 96 74 70 0.787 2.530 1-5 14:82:00 1.00 3.50 23.650 92 74 70 1.000 3.225 1-6 14:55:00 0.98 3.50 26.875 92 74 71 0.990 3.195 1-7 14:58:00 0.41 1.40 30.070 97 74 71 0.640 2.057 1-8 15:01:00 0.77 2.80 32.127 93 73 71 0.877 2.828 1-19 15:04:00 0.74 2.60 34.955 93 73 71 0.860 2.770 1-10 15:07:00 0.62 2.20 37.725 93 73 71 0.860 2.770 1-11 15:10:00 0.34 1.20 40.265 94 73 71 0.583 1.875 1-11 15:13:00 0.32 1.10 42.130 </td <td>· -</td> <td></td> <td></td> <td></td> <td></td> <td>95</td> <td>73</td> <td>70</td> <td>0.900</td> <td>2.890</td> <td>52.382</td>	· -					95	73	70	0.900	2.890	52.382
1-4	``				21.120	96	74	70	0.787	2.530	45.829
1-15					23.650	92	74	70	1.000	3.225	58.202
1-1					26.875	92	74	71	0.990	3.195	57.618
1-7					30.070	97	74	71	0.640	2.057	37.268
1-8					32.127	93	73	71	0.877	2.828	51.072
1-19 15:07:00 0.62 2.20 37:725 93 73 71 0.787 2.530 1-11 15:07:00 0.62 2.20 37:725 93 73 71 0.583 1.875 1-11 15:10:00 0.34 1.20 40:255 94 73 71 0.583 1.875 1-12 15:13:00 0.32 1.10 42:130 100 73 71 0.566 1.814 1-13 15:16:00 0.33 1.20 43:944 100 73 71 0.574 1.833 1-14 15:19:00 0.35 1.20 45:777 91 75 71 0.592 1.913 1-15 15:22:00 0.30 1.20 47:890 94 75 71 0.548 1.772 1-16 15:22:00 0.26 0.92 49:462 98 75 71 0.548 1.772 1-18 15:31:00 0.22 0.77 5					34.955	. 93	73	71	0.860	2.770	50.068
1-10						93	73	71	0.787	2.530	45.829
1-11						94	73	71	0.583	1.875	33.938
1-12 15:16:00 0.33 1.20 43.944 100 73 71 0.574 1.833 1-13 15:16:00 0.33 1.20 45.777 91 75 71 0.592 1.913 1-14 15:19:00 0.35 1.20 47.690 94 75 71 0.548 1.772 1-15 15:22:00 0.30 1.20 47.690 94 75 71 0.548 1.772 1-16 15:22:00 0.26 0.92 49.462 98 75 71 0.510 1.628 1-17 15:28:00 0.22 0.77 51.090 100 76 72 0.469 1.510 1-18 15:31:00 0.20 0.70 52.600 102 76 72 0.447 1.440 1-19 15:34:00 0.21 0.75 54.040 90 77 73 0.458 1.493 1-20 15:37:00 0.20 0.73						100	73	71	0.566	1.814	32.924
1-13 15.10.00 0.35 1.20 45.777 91 75 71 0.592 1.913 1-14 15:19:00 0.35 1.20 47.690 94 75 71 0.548 1.772 1-15 15:22:00 0.30 1.20 47.690 94 75 71 0.548 1.772 1-16 15:25:00 0.26 0.92 49.462 98 75 71 0.510 1.628 1-17 15:28:00 0.22 0.77 51.090 100 76 72 0.469 1.510 1-18 15:31:00 0.20 0.70 52.600 102 76 72 0.447 1.440 1-19 15:34:00 0.21 0.75 54.040 90 77 73 0.458 1.493 1-20 15:37:00 0.20 0.73 55.533 85 77 74 0.447 1.449 1-20 15:37:00 0.23 0.84 5						100	73	71	0.574	1.833	33.435
1-14 15,18:00 0.30 1.20 47.690 94 75 71 0.548 1.772 1-15 15:22:00 0.30 1.20 47.690 94 75 71 0.548 1.772 1-16 15:25:00 0.26 0.92 49.462 98 75 71 0.510 1.628 1-17 15:28:00 0.22 0.77 51.090 100 76 72 0.469 1.510 1-18 15:31:00 0.20 0.70 52.600 102 76 72 0.447 1.440 1-19 15:34:00 0.21 0.75 54.040 90 77 73 0.458 1.493 1-20 15:37:00 0.20 0.73 55.533 85 77 74 0.447 1.449 1-20 15:37:00 0.23 0.84 56.982 80 77 74 0.480 0.000 2-1 15:52:00 1.10 3.90 56						91	75	71	0.592	1.913	34.433
1-13 15:25:00 0.26 0.92 49.462 98 75 71 0.510 1.628 1-16 15:25:00 0.26 0.92 49.462 98 75 71 0.510 1.628 1-17 15:28:00 0.22 0.77 51.090 100 76 72 0.447 1.440 1-18 15:31:00 0.20 0.70 52.600 102 76 72 0.447 1.440 1-19 15:34:00 0.21 0.75 54.040 90 77 73 0.458 1.493 1-20 15:37:00 0.20 0.73 55.533 85 77 74 0.447 1.449 15:40:00 0.23 0.84 56.982 80 77 74 0.480 0.000 2-1 15:52:00 1.10 3.90 56.982 87 73 73 1.049 4.506 2-2 15:55:00 1.00 3.60 61.488 8	-					94	75	71	0.548	1.772	31.879
1-16 15.28:00 0.32 0.77 51.090 100 76 72 0.469 1.510 1-17 15:28:00 0.22 0.77 51.090 100 76 72 0.447 1.440 1-18 15:31:00 0.20 0.75 54.040 90 77 73 0.458 1.493 1-19 15:37:00 0.20 0.73 55.533 85 77 74 0.447 1.449 1-20 15:37:00 0.23 0.84 56.982 80 77 74 0.480 0.000 2-1 15:52:00 1.10 3.90 56.982 87 73 73 1.049 4.506 2-2 15:55:00 1.00 3.60 61.488 89 80 73 1.000 3.262 2-3 15:58:00 0.97 3.30 64.750 90 81 73 0.985 3.215 2-4 16:01:00 0.92 3.30 67.96		-			49.462	98	. 75	71	0.510	1.628	29.678
1-17 15.88.00 0.22 0.70 52.600 102 76 72 0.447 1.440 1-18 15:31:00 0.20 0.75 54.040 90 77 73 0.458 1.493 1-19 15:34:00 0.21 0.75 54.040 90 77 74 0.447 1.449 1-20 15:37:00 0.20 0.73 55.533 85 77 74 0.480 0.000 15:40:00 0.23 0.84 56.982 80 77 74 0.480 0.000 2-1 15:52:00 1.10 3.90 56.982 87 73 73 1.049 4.506 2-2 15:55:00 1.00 3.60 61.488 89 80 73 1.000 3.262 2-3 15:58:00 0.97 3.30 64.750 90 81 73 0.985 3.215 2-4 16:01:00 0.92 3.30 67.965 90 </td <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>100</td> <td>76</td> <td>72</td> <td>0.469</td> <td>1.510</td> <td>27.299</td>	-					100	76	72	0.469	1.510	27.299
1-18 15:31:00 0.22 0.75 54.040 90 77 73 0.458 1.493 1-19 15:34:00 0.21 0.75 54.040 90 77 74 0.447 1.449 1-20 15:37:00 0.20 0.73 55.533 85 77 74 0.480 0.000 15:40:00 0.23 0.84 56.982 80 77 74 0.480 0.000 2-1 15:52:00 1.10 3.90 56.982 87 73 73 1.049 4.506 2-2 15:55:00 1.00 3.60 61.488 89 80 73 1.000 3.262 2-3 15:58:00 0.97 3.30 64.750 90 81 73 0.985 3.215 2-4 16:01:00 0.92 3.30 67.965 90 81 74 0.959 3.125 2-5 16:04:00 0.85 3.00 71.090 93 <td></td> <td></td> <td></td> <td></td> <td></td> <td>102</td> <td>76</td> <td>72</td> <td>0.447</td> <td>1.440</td> <td>26.029</td>						102	76	72	0.447	1.440	26.029
1-19 15.39.00 0.21 55.533 85 77 74 0.447 1.449 1-20 15:37:00 0.20 0.73 55.533 85 77 74 0.480 0.000 15:40:00 0.23 0.84 56.982 80 77 74 0.480 0.000 2-1 15:52:00 1.10 3.90 56.982 87 73 73 1.049 4.506 2-2 15:55:00 1.00 3.60 61.488 89 80 73 1.000 3.262 2-3 15:58:00 0.97 3.30 64.750 90 81 73 0.985 3.215 2-4 16:01:00 0.92 3.30 67.965 90 81 74 0.959 3.125 2-5 16:04:00 0.85 3.00 71.090 93 82 74 0.922 3.008 2-6 16:07:00 0.74 2.70 74.098 93 83						90	77	73	0.458	1.493	26.672
1-20 15:540:00 0.23 0.84 56.982 80 77 74 0.480 0.000 2-1 15:52:00 1.10 3.90 56.982 87 73 73 1.049 4.506 2-2 15:55:00 1.00 3.60 61.488 89 80 73 1.000 3.262 2-3 15:58:00 0.97 3.30 64.750 90 81 73 0.985 3.215 2-4 16:01:00 0.92 3.30 67.965 90 81 74 0.959 3.125 2-5 16:04:00 0.85 3.00 71.090 93 82 74 0.922 3.008 2-6 16:07:00 0.74 2.70 74.098 93 83 75 0.860 2.802 2-6 16:07:00 0.74 2.70 74.098 93 83 75 0.800 2.621						85	77	74	0.447	1.449	26.029
2-1 15:52:00 1.10 3.90 56.982 87 73 73 1.049 4.506 2-2 15:55:00 1.00 3.60 61.488 89 80 73 1.000 3.262 2-3 15:58:00 0.97 3.30 64.750 90 81 73 0.985 3.215 2-4 16:01:00 0.92 3.30 67.965 90 81 74 0.959 3.125 2-5 16:04:00 0.85 3.00 71.090 93 82 74 0.922 3.008 2-6 16:07:00 0.74 2.70 74.098 93 83 75 0.860 2.802 2-6 16:07:00 0.24 2.30 76.900 93 83 75 0.800 2.621	1-20				 	80	77	74	0.480	0.000	27.913
2-1 15:52:00 1.10 3.60 61.488 89 80 73 1.000 3.262 2-2 15:55:00 1.00 3.60 61.488 89 80 73 1.000 3.262 2-3 15:58:00 0.97 3.30 64.750 90 81 73 0.985 3.215 2-4 16:01:00 0.92 3.30 67.965 90 81 74 0.959 3.125 2-5 16:04:00 0.85 3.00 71.090 93 82 74 0.922 3.008 2-6 16:07:00 0.74 2.70 74.098 93 83 75 0.860 2.802 2-6 16:07:00 0.24 2.30 76.900 93 83 75 0.800 2.621					+	87	73	73	1.049	4.506	61.043
2-2 15:58:00 0.97 3.30 64.750 90 81 73 0.985 3.215 2-4 16:01:00 0.92 3.30 67.965 90 81 74 0.959 3.125 2-5 16:04:00 0.85 3.00 71.090 93 82 74 0.922 3.008 2-6 16:07:00 0.74 2.70 74.098 93 83 75 0.860 2.802 2-6 16:07:00 0.24 2.30 76.900 93 83 75 0.800 2.621						89	80	73	1.000	3.262	58.202
2-3 15:36:30 0.92 3:30 67:965 90 81 74 0.959 3.125 2-4 16:01:00 0.92 3:30 67:965 90 81 74 0.959 3.125 2-5 16:04:00 0.85 3:00 71:090 93 82 74 0.922 3:008 2-6 16:07:00 0.74 2:70 74:098 93 83 75 0.860 2:802 2-6 16:07:00 0.74 2:70 76:900 93 83 75 0.800 2:621						+	81	73	0.985	3.215	57.323
2-4 16:01:00 0.52 3.00 71.090 93 82 74 0.922 3.008 2-5 16:04:00 0.85 3.00 71.090 93 82 74 0.922 3.008 2-6 16:07:00 0.74 2.70 74.098 93 83 75 0.860 2.802 2-6 16:07:00 0.74 2.70 76.900 93 83 75 0.800 2.621				 		90	81	74	0.959	3.125	55.826
2-5 15:04:00 0.63 0.50 0.60 2.802 2-6 16:07:00 0.74 2.70 74:098 93 83 75 0.860 2.802 2-75 15:04:00 0.74 2.70 74:098 93 83 75 0.800 2.621				 			82	74	0.922	3.008	53.660
2-6 16:07:00 0.74 2.10 76:900 93 83 75 0.800 2.621					+		83_	75	0.860	2.802	50.068
			0.74	2.30	76,900	 	83	75	0.800	2.621_	46.562
2-7 16:10:00 0.04 2.00 79.521 94 83 75 0.721 2.345						 	83	75	0.721	2.345	41.970
2-8 16:13:00 0.52 1.90 /9.321 94 90 10:16:10:00 0.35 1.20 81.866 96 82 75 0.592 1.922				 			82	75	0.592	1,922	34.433

										7
2-10	16:19:00	0.28	1.00	83.788	96	82_	75	0.529	1.712	30.798
2-10	16:22:00	0.40	1.40	85.500	96	83	76	0.632	2.370	36.810
	16:25:00	0.46	1,60	87.870	97	82	77	0.678	1.895	39.475
2-12	16:28:00	0.47	1.70	89.765	97	82	77	0.686	2.235	39.90
2-13		0.44	1.60	92.000	97	82	77	0.663	2.165	38.60
2-14	16:31:00	0.40	1,40	94,165	97	83	78	0.632	2.050	36.81
2-15	16:34:00	0.36	1.30	96.215	94	82	79	0.600	1.965	34.92
2-16	16:37:00	0.37	1.30	98.180	91	82	79	0.608	1.990	35.40
2-17	16:40:00	0.35	1,30	100,170	91	82	79	0.592	1.940	34.43
2-18	16:43:00	0.33	1,20	102.110	90	83	79	0.574	1.885	33.43
2-19	16:46:00	0.20	0.73	103.995	90	83	79	0.447	1.480	26.02
2-20	16:49:00 16:52:00	0.20	0.73	105,475	<u> </u>					
	2:00:00			93.547		77.8	73.6		93.54	7

	10.52.00	100111				
Total	2:00:00	93	.547	77.8	73.6	
Average		1.91	93.6	75.7		0.708
Min		0.70	80.0	69.0		0.447
Max		3.90	102.0	83.0		1.049

Mostardi Platt Isokinetic V5.0 2/3/14

Run 3-Method 5/29

Client: Rk & Associates, Inc.

Facility: Behr Iron and Metal Rockford Facility

Test Location: Northwest Baghouse Gas Cooler Inlet

Source Condition: Normal

Date: 10/6/15 Start Time: 17:35

End Time: 19:51

Source Condition: Normal				CTACK CONDITIO	MIC	
DRY GAS METER CO	ONDITIONS			STACK CONDITION		
ΔН:	2.04	In. H₂O		Static Pressure		in. H ₂ O
Meter Temperature, Tm:	75.5	°F	Flue	e Pressure (Ps):	29.35	in, Hg. abs.
Sqrt ΔP :	0.737	In. H₂O		Carbon Dioxide:		%
Stack Temperature, Ts:	101.4	°F		Oxygen:		%
Meter Volume, Vm:	94.878	ft ³		Nitrogen:	7 9.1	%
Meter Volume, Vmstd:	91.445	dscf	Gas	Weight dry, Md:	28.848	lb/lb mole
Meter Volume, Vwstd:	1.535	wscf	Gas	Weight wet, Ms:	28.669	lb/lb mole
Isokinetic Variance:	101.5	%		Excess Air:		%
ioonarious variation			G	as Velocity, Vs:	43.201	fps
Test Length	120.00	in mins.	•	Volumetric Flow:	15,396	acfm
Nozzle Diameter	0.242	in inches	•	Volumetric Flow:	13,971	dscfm
Barometric Pressure	29.39	in Hg		Volumetric Flow	14,206	scfm
Calculated Fo:	1.00			Fo Validity	; #N/A	
Calculated 1 0.	1.00	MOISTUR	E DETERMINATION			
Initial Impinger Content:	1942.9	ml	Silica Initial Wt.	823.2	grams	
	1954.2	ml	Silica Final Wt.	844.5	grams	
Final Impinger Content: Impinger Difference:	11.3	ml	Silica Difference:	21.3	grams	

Total Water Gain: 32.6 Moisture, Bws: 0.017 **Supersaturation Value, Bws: 0.069**

		Velocity	Orifice	Actual	Stack	Meter	Temp		Collected	Point
Port-	Clock	Head ∆p	ΔH In. H2O	Meter Vol.	Temp °F	Inlet °F	Outlet	Sqrt. 	Vol.	Vel ft/sec
Point No.	Time	in, H2O		8.487	105	79	79	1.095	3.568	64.252
1-1	17:35:00	1,20	4.20	12.055	99	80	79	1.140	3.680	66.876
1-2	17:38:00	1.30	4.60	15.735	98	80	78	1.049	3.410	61.517
1-3	17:41:00	1.10	3.90	19.145	100	81	78	0.949	3.085	55.644
1-4	17:44:00	0.90	3.10	22.230	99	81	78	0.927	3.010	54.393
1-5	17:47:00	0.86	3.10	25,240	99	81	78	0.837	2.705	49.073
1-6	17:50:00	0.70	2.50	27.945	98	80	77	0.742	2.405	43.499
1-7	17:53:00	0.55	2.00	30.350	98	80	77	0.592	1.925	34.700
1-8	17:56:00	0.35	1.20		101	81	76	0.574	1.885	33.694
1-9	17:59:00	0.33	1,20	32.275	98	81	76	0.480	1.525	28.129
1-10	18:02:00	0.23	0.82	34.160	97	80	76	0.548	1.795	32.126
1-11	18:05:00	0.30	1.10	35.685	97	80	76	0.566	1.820	33.180
1-12	18:08:00	0.32	1.10	37.480	98	78	75	0.616	1.995	36.157
1-13	18:11:00	0.38	1.30	39.300	98	78	75	0.608	1.970	35.678
1-14	18:14:00	0.37	1.30	41.295 43.265	95	77	74	0.583	1.875	34.201
1-15	18:17:00	0.34	1,20		96	77	74	0.600	1.945	35.192
1-16	18:20:00	0.36	1.30	45.140	96	77	74	0.548	1.790	32.126
1-17	18:23:00	0.30	1.10	47.085	98	77	74	0.548	1,750	32.126
1-18	18:26:00	0.30	1.10	48.875	98	77	74	0.529	1.715	31.037
1-19	18:29:00	0.28	1.00	50.625	98	77	74	0.500	1.610	29.327
1-20	18:32:00	0.25	0.89	52.340	95	- ''-	(-	0.000		
	18:35:00			53.950	96	71	71	0.938	3.015	55.022
2-1	18:51:00	0.88	3.10	53.950	96	73	71	0.943	3.025	55.334
2-2	18:54:00	0.89	3.10	56.965		75	71	1.049	3.395	61.517
2-3	18:57:00	1.10	3.40	59.990	92	75	71	1.049	3.380	61.517
2-4	19:00:00	1.10	3.40	63.385	92	76	71	1,000	3,227	58.654
2-5	19:03:00	1.00	3.50	66.765	96	76	71	1.000	3.223	58.654
2-6	19:06:00	1.00	3.50	69.992	95		71	0.990	3.210	58.064
2-7	19:09:00	0.98	3.50	73.215	93	76		0.970	3.130	56.867
2-8	19:12:00	0.94	3.30	76,425	93	77	71	0.894	2.860	52.462
2-9	19:15:00	0.80	2.80	79.555	100	77		0.004		

										7
2-10	19:18:00	0.68	2.40	82.415	100	77	71	0.825	2.645	48.367
2-11	19:21:00	0.40	1.40	85.060	112	77	71	0.632	2.015	37.096
	19:24:00	0.35	1.20	87.075	114	77	71	0.592	1.870	34.700
2-12	19:27:00	0.35	1.20	88.945	114	77	71	0.592	1.885	34.700
2-13	19:30:00	0.34	1.20	90,830	115	77	71	0.583	1.850	34.20
2-14		0.29	1,00	92.680	114	77	71	0.539	1.700	31.58
2-15	19:33:00	0.29	1.20	94.380	110	77	71	0.583	1.860	34.20
2-16	19:36:00 19:39:00	0.33	1.10	96.240	119	76	70	0.574	1.810	33.69
2-17	19:39:00	0.32	1.10	98.050	116	75	70	0.566	1.780	33.18
2-18	19:42:00	0.30	1.00	99.830	111	75	70	0.548	1.737	32.12
2-19 2-20	19:48:00	0.32	1.10	101.567	112	75	70	0.566	1.798	33.18
2-20	19:51:00	0.02		103.365				<u> </u>		
tal	2:00:00		<u> </u>	94.878		77.5	73.5		94.87	8

Total 2:00:00 0.737 101.4 75.5 2.04 Average 0.480 0.82 92.0 70.0 1.140 119.0 81.0 4.60 Max

Mostardi Platt Isokinetic V5.0 2/3/14

Client:	Rk & Associates, Inc.							
Facility:		Behr Iron and Metal Rockford Facility						
Test Location:	Northw	est Baghouse Outle	et Stack					
Project #:		M154005						
Test Method:		5/29						
Test Engineer:		MDK						
Test Technician:		KOJ						
	<u>R1</u>	<u>R2</u>	<u>R3</u>					
Temp ID:	CM15	CM15	CM15					
Meter ID:	CM15	CM15	CM15					
Pitot ID:	170A	170A	170A					
Nozzle Diameter (Inches):	0.230	0.230	0.230					
Meter Calibration Factor (Y):	. 0.988	0.988	0.988					
Meter Orifice Setting (Delta H):	1.488	1.488	1.488					
Nozzle Kit ID Number and Material:	Glass #17	Glass #17	Glass #17					
Pitot Tube Coefficient:		0.840						
Probe Length (Feet):		4.0						
Probe Liner Material:		Glass						
Sample Plane:		Horizontal						
Port Length (Inches):		8.00						
Port Size (Diameter, Inches):		6.00						
Port Type:		Nipple						
Duct Shape:		Circular						
Diameter (Feet):		2.75						
- 14 (O - 12 Forth)		5.940						
Duct Area (Square Feet):		5.940						
Upstream Diameters:		>.5						
Downstream Diameters:		>2						
Number of Ports Sampled:		2						
Number of Points per Port:		12						
Minutes per Point:		5.0						
Minutes per Reading:	5.0							
Total Number of Traverse Points:		24						
Test Length (Minutes):	120 _							
Train Type:	Anderson Box							
Source Condition:	Normal							
Servomex Serial Number:		01440D1/3935						
Moisture Balance ID:		S10-37						
# of Runs		3						

Client: Rk & Associates, Inc.

Facility: Behr Iron and Metal Rockford Facility
Test Location: Northwest Baghouse Outlet Stack

Test Method: 5/29

Test Method: Source Condtion:	5/29	Normal Run 1	Normal Run 2	Normal Run 3
Identify Analyte: Molecular Weight: ug (net) collected:	Antimony (Sb) 121.75	ADL 37.6	ADL 14.4	ADL 13.8
Identify Analyte: Molecular Weight: ug (net) collected:	Arsenic (As) 74.92	ADL 34.37	ADL 13.47	ADL 11.35
Identify Analyte: Molecular Weight: ug (net) collected:	Barium (Ba) 137.33	ADL 9	ADL 5.7	DLL 4.6
Identify Analyte: Molecular Weight: ug (net) collected:	Beryllium (Be) 9.01	BDL 0.25	BDL 0.25	BDL 0.25
Identify Analyte: Molecular Weight: ug (net) collected:	Cadmium (Cd) 112.4	ADL 1.063	ADL 1.622	ADL 2.792
Identify Analyte: Molecular Weight: ug (net) collected:	51.99	ADL 10.28	ADL 5.08	ADL 4.54
Identify Analyte: Molecular Weight: ug (net) collected:	58.93	ADL 17.972	ADL 6.925	ADL 6.613
Identify Analyte: Molecular Weight: ug (net) collected:	63.55	ADL 349.6	ADL 186	ADL 284.3
Identify Analyte: Molecular Weight: ug (net) collected:	207.19	ADL 796.8	ADL 409.53	ADL 470.17
Identify Analyte Molecular Weight ug (net) collected	54.94	ADL 15.54	ADL 7.74	ADL 9.59
ldentify Analyte Molecular Weight ug (net) collected	: 58.71	ADL 72.04	ADL 29.98	ADL 29.21

Client: Rk & Associates, Inc.

Facility: Behr Iron and Metal Rockford Facility
Test Location: Northwest Baghouse Outlet Stack

Test Method: 5/29

Source Condtion:		Normal Run 1	Normal Run 2	Normal Run 3
Identify Analyte:	Selenium (Se)			
Molecular Weight:	78.96	BDL	BDL	BDL
ug (net) collected:		2.5	2.5	2.5
Identify Analyte:	Silver (Ag)			
Molecular Weight:	107.87	DLL	DLL	BDL
ug (net) collected:		0.73	0.53	0.5
Identify Analyte:	Zinc (Zn)			
Molecular Weight:	65.37	ADL	ADL	ADL
ug (net) collected:		357.7	173.2	174.8

Isokinetic V5.0 2/3/14

Run 1-Method 5/29

Client: Rk & Associates, Inc.

Facility: Behr Iron and Metal Rockford Facility
Test Location: Northwest Baghouse Outlet Stack

Source Condition: Normal

Date:

10/6/15

Start Time: End Time: 11:40 13:52

DRY GAS METER O	DRY GAS METER CONDITIONS			STACK CONDITIONS					
Δ Н :	1.36	in. H₂O		Static Pressure	-2.00	in. H ₂ O			
Meter Temperature, Tm:	67.9	°F	Fic	ie Pressure (Ps)	: 29.25	in. Hg. abs.			
Sqrt ∆P:	0.755	in. H₂O		Carbon Dioxide	: 0.00	%			
Stack Temperature, Ts:	89.6	°F		Oxygen	; 20.90	%			
Meter Volume, Vm:	86.700	ft ³		Nitrogen	: 79.10	%			
Meter Volume, Vmstd:	84.471	dscf	Gas	Weight dry, Md	: 28.836	lb/lb mole			
Meter Volume, Vwstd:	1.314	wscf	Gas	Weight wet, Ms	: 28.670	lb/lb mole			
Isokinetic Variance:	100.3	%I		Excess Air	***	%			
				Gas Velocity, Vs	: 43.866	fps			
Test Length	120.00	in mins.		Volumetric Flow:		acfm			
Nozzle Diameter	0.230	in inches		Volumetric Flow	: 14,459	dscfm			
Barometric Pressure	29.40	in Hg		Volumetric Flow	14,684	scfm			
Calculated Fo:	#DIV/0!			Fo Validity	; #DIV/0!				
		MOIS	TURE DETERMINATION						
Initial Impinger Content:	2092.5	ml	Silica Initial Wt.	800.2	grams				
Final Impinger Content:	2102.1	ml	Silica Final Wt.	818.5	grams				
Impinger Difference:	9.6	ml	Silica Difference:	18.3	grams				

Total Water Gain: 27.9 Moisture, Bws: 0.015 Supersaturation Value, Bws: 0.048

		Velocity	Orifice	Actual	Stack	Meter	Temp		Collected	Point
Port-	Clock	Head ∆p	ΔH	Meter Vol.	Temp	Inlet	Outlet	Sqrt.	Vol.	Vel
Point No.	Time	in. H2O	in. H2O	ft ³	°F	°F	<u>°F</u>	_ <u>Δ</u> p	ft ³	ft/sec_
1-1	11:40:00	0.70	1.66	82.541	85	61	62	0.837	3.779	48.636
2	11:45:00	0.70	1.66	86.320	86	63	62	0.837	4.050	48.636
3	11:50:00	0.67	1.59	90.370	88	65	62	0.819	3.170	47.583
4	11:55:00	0.66	1.56	93.540	92	67	62	0.812	3.920	47.226
5	12:00:00	0.62	1.47	97.460	93	68	63	0.787	3. <u>83</u> 0	45.773
6	12:05:00	0.62	1.47	101.290	94	68	63	0.787	3.790	45.773
7	12:10:00	0.57	1.35	105.080	90	69	63	0.755	3.610	43.888
8	12:15:00	0.53	1.26	108.690	89		64	0.728	3.530	42.320
9	12:20:00	0.50	1.19	112.220	88	71	64	0.707	3.400	41.105
10	12:25:00	0.46	1.09	115.620	87	70	64	0.678	3.500	39.427
11	12:30:00	0.46	1.09	119.120	87	70	65	0.678	3.270	39.427
12	12:35:00	0.41	0.98	122,390	87	70	65	0.640	3.217	37.222
	12:40:00	·		125.607						
2-1	12:52:00	0.69	1.64	125.607	89	70	65	0.831	4.093	48.288
2	12:57:00	0.68	1.62	129.700	90	72	65	0.825	3.950	47.937
3	13:02:00	0.67	1.59	133.650	91	73	66	0.819	3.900	47.583
4	13:07:00	0.64	1.53	137.550	92	74	67	0.800	3.960	46.505
5	13:12:00	0.60	1.43	141.510	91		67	0.775	3.700	45.029
6	13:17:00	0.62	1.48	145.210	91	74	67	0.787	3.750	45.773
7	13:22:00	0.56	1.34	148.960	89	75	68	0.748	3.770	43.502
8	13:27:00	0.54	1.29	152.730	89	75	68	0.735	3.460	42.718
9	13:32:00	0.51	1.22	156.190	89	75	68	0.714	3.630	41.514
10	13:37:00	0.49	1.17	159.820	90	75	68	0.700	3.250	40.692
11	13:42:00	0.44	1.05	163.070	92	74	68	0.663	3.550	38.560
12	13:47:00	0.42	1.00	166.620	91	73	68	0.648	2.621	37.674
	13:52:00			169.241						
Fotal	2:00:00			86.700		70.7	65.2		86.700)

86.700 70.7 65.2 2:00:00 Total 89.6 67.9 0.755 1.36 Average 0.640 0.98 85.0 61.0 Min 0.837 94.0 75.0 Max 1.66

Run 2-Method 5/29

Client: Rk & Associates, Inc.

Facility: Behr Iron and Metal Rockford Facility

Test Location: Northwest Baghouse Outlet Stack

Source Condition: Normal

Date:

10/6/15

Sta

Start Time:	14:40
End Time:	16:52

DRY GAS METER C	ONDITIONS			STACK CONDITI	ONS	
ΔH:	1.29	In. H₂O		Static Pressure	-2.00	in. H₂O
Meter Temperature, Tm:	73.8	°F	Flu	e Pressure (Ps)	29.25	in. Hg. abs.
Sqrt ∆P:	0.731	ln. H₂O		Carbon Dioxide	: 0.00	%
Stack Temperature, Ts:	89.9	°F		Oxygen	: 20.90	%
Meter Volume, Vm;	85.452	ft ³		Nitrogen	; 79.1	%
Meter Volume, Vmstd:	82.329	dscf	Gas	Weight dry, Md	28.836	lb/lb mole
Meter Volume, Vwstd:	1.243	wscf	Gas	Weight wet, Ms	28.675	lb/lb mole
Isokinetic Variance:	100.9	%I		Excess Air	·	%
			(Gas Velocity, Vs	: 42.516	fps
Test Length	120.00	in mins.		Volumetric Flow	: 15,152	acfm
Nozzle Diameter	0.230	in inches		Volumetric Flow	: 14,013	dscfm
Barometric Pressure	29.40	in Hg	-	Volumetric Flow	14,224	scfm
Calculated Fo:	#DIV/0!			Fo Validity	: #DIV/0!	
		MOIST	URE DETERMINATION			
Initial Impinger Content:	1911.0	ml	Silica Initial Wt.	841.0	grams	
Final Impinger Content:	1924.6	ml	Silica Final Wt.	853.8	grams	
Impinger Difference:	13.6	ml	Silica Difference:	12.8	grams	

Supersaturation Value, Bws: 0.015 0.048 Total Water Gain: 26.4 Moisture, Bws:

		Velocity	Orifice	Actual	Stack	Meter	Temp		Collected	Point
Port-	Clock	Head Δp	ΔН	Meter Vol.	Temp	Inlet	Outlet	Sqrt.	Vol.	Vel
Point No.	Time	in. H2O	in. H2O	ft ³	°F	°F	°F	<u>∆p</u>	ft ³	ft/sec
1-1	14:40:00	0.55	1.31	74.257	89	70	68	0.742	3.263	43.119
2	14:45:00	0.58	1.38	77.520	90	72	68	0.762	3.690	44.280
3	14:50:00	0.58	1.38	81.210	90	73	68	0.762	3.820	44.280
4	14:55:00	0.60	1.43	85.030	90	75	68	0.775	3.590	45.037
5	15:00:00	0.63	1.50	88.620	90	76	69	0.794	3.970	46.149
6	15:05:00	0.60	1.43	92.590	89	77	69	0.775	3.700	45.037
7	15:10:00	0.58	1.38	96.290	90	77	70	0.762	3.800_	44.280
8	15:15:00	0.54	1.29	100.090	90	78	70	0.735	3.440	42.726
9	15:20:00	0.52	1.24	103.530	89	 78	71	0.721	3.610	41.927
10	15:25:00	0.49	1.17	107.140	89	78_	71	0.700	3.350	40.700
11	15:30:00	0.43	1.03	110.490	89	77	71	0.656	3.200	38.126
12	15:35:00	0.34	0.81	113.690	89	77	71	0.583	3.034	33.902
	15:40:00			116.724						
2-1	15:52:00	0.58	1.38	116.724	88	73	71	0.762	3.426	44.280
2	15:57:00	0.61	1.45	120.150	88	75	71	0.781	4.040	45.411
3	16:02:00	0.67	1,59	124.190	89	77	71	0.819	4.020	47.591
4	16:07:00	0.62	1.48	128.210	90	78	71	0.787	3.830	45.781
5	16:12:00	0.64	1.53	132.040	90	78	72	0.800	3.980	46.514
6	16:17:00	0.61	1.45	136.020	90	79	72	0.781	3.730	45.411
7	16:22:00	0.55	1.33	139.750	91	79	72	0.742	3.670	43.119
8	16:27:00	0.51	1.23	143.420	92	79	72	0.714	3.420	41.522
9	16:32:00	0.49	1.18	146.840	91	79	73	0.700	3.550	40.700
10	16:37:00	0.47	1.14	150.390	91	79	73	0.686	3.360	39.860
11	16:42:00	0.41	0.99	153.750	91	79	73	0.640	3.160	37.229
12	16:47:00	0.33	0.78	156.910	92	79	73	0.574	2.799	33.400
	16:52:00			159.709		"				

85.452 85.452 76.8 70.8 2:00:00 Total 1.29 89.9 73.8 0.731 Average 0.574 68.0 Min 0.78 0.88 92.0 79.0 0.819 1.59 Max

Run 3-Method 5/29

Client: Rk & Associates, Inc.

Facility: Behr Iron and Metal Rockford Facility **Test Location: Northwest Baghouse Outlet Stack**

Source Condition: Normal

Date: Start Time:

10/6/15 17:35

End Time:

19:51

DRY GAS METER C	ONDITIONS			STACK CONDIT	IONS	
ΔΗ:	1.43	In. H ₂ O		Static Pressure	e -2.00	in. H₂O
Meter Temperature, Tm:	74.0	°F	Flu	e Pressure (Ps): 29.25	in. Hg. abs.
Sqrt ∆P:	0.769	In. H₂O		Carbon Dioxide	9: 0.00	%
Stack Temperature, Ts:	92.2	°F		Oxyger	n: 20.90	%
Meter Volume, Vm:	90.586	ft ³		Nitroger	n: 79.1	%
Meter Volume, Vmstd:	87.274	dscf	Gas	Weight dry, Mo	1: 28.836	lb/lb mole
Meter Volume, Vwstd:	1.484	wscf	Gas	Weight wet, Ms	s: 28.655	lb/lb mole
Isokinetic Variance:	102.0	%I		Excess Air	r: (##	%
				Gas Velocity, Vs	s: 44.844	fps
Test Length	120.00	in mins.		Volumetric Flow	/: 15,981	acfm
Nozzle Diameter	0.230	in inches		Volumetric Flow	/: 14,690	dscfm
Barometric Pressure	29.40	in Hg		Volumetric Flow	/: 14,940	scfm
Calculated Fo:	#DIV/0!			Fo Validity	/: #DIV/0!	
		MOISTU	RE DETERMINATION			
Initial Impinger Content:	2094.0	ml	Silica Initial Wt.	809.7	grams	
Final Impinger Content:	2110.9	ml	Silica Final Wt.	824.3	grams	
Impinger Difference:	16.9	ml	Silica Difference:	14.6	grams	

Moisture, Bws: 0.017 Supersaturation Value, Bws: 0.052 Total Water Gain: 31.5

		Velocity	Orifice	Actual	Stack	Meter	r Temp		Collected	Point
Port-	Clock	Head ∆p	ΔΗ	Meter Vol.	Temp	Inlet	Outlet	Sqrt.	Vol.	Vel
Point No.	Time	in. H <u>2O</u>	in. H2Q	ft ³ .	°F	°F	°F	Δp	ft ³	ft/sec
1-1	17:35:00	0.64	1.55	60.017	94	70	70	0.800	3.503	46.629
2	17:40:00	0.62	1.49	63.520	93	72	70	0.787	3.940	45.894
3	17:45:00	0.69	1.67	67.460	92	76	70	0.831	4.140	48.416
4	17:50:00	0.67	1.62	71.600	92	76	70	0.819	4.000	47.709
5	17:55:00	0.66	1.59	75.600	92	77	71	0.812	4.250	47.352
6	18:00:00	0.66	1.59	79.850	92	78	.71	0.812	3.840	47,352
7	18:05:00	0.65	1.57	83.690	91	78	71	0.806	3.920	46.991
8	18:10:00	0.56	1.35	87.610	91	77	71	0.748	3.740	43.617
9	18:15:00	0.54	1.30	91.350	91	79	72	0.735	3.750	42.831
10	18:20:00	0.53	1.28	95.100	91	79	72	0.728	3.560	42.433
11	18:25:00	0.50	1.21	98.660	90	79	72	0.707	3. <u>53</u> 0	41.214
12	18:30:00	0.48	1.16	102.190	90	79	72	0.693	3.395	40.382
	18:35:00			105.585						
2-1	18:51:00	0.65	1.57	105.585	89	76	71	0.806	4.035	46.991
2	18:56:00	0.64	1.55	109.620	89	.77	71	0.800	3.880	46.629
3	19:01:00	0.66	1.59	113.500	89	77	71	0.812	4.100	47.352
4	19:06:00	0.66	1.59	117.600	89	79	71	0.812	4.050	47.352
5	19:11:00	0.63	1.52	121.650	91	79	72	0.794	3.760	46.263
6	19:16:00	0.60	1.45	125.410	93	78	71	0.775	3.840	45.148
7	19:21:00	0.58	1.40	129.250	94	77	71	0.762	3.730	44.389
8	19:26:00	0.55	1.33	132.980	94	77	. 71	0.742	3.740	43.226
9	19:31:00	0.54	1.30	136.720	95	77	71	0.735	3.960	42.831
10	19:36:00	0.54	1.30	140.680	97	77	71	0.735	3.240	42.831
11	19:41:00	0.51	1,23_	143.920	97	76	71	0.714	3.670	41.624
12	19:46:00	0.49	1.18	147.590	97	76	70	0.700	3.013	40.800
	19:51:00			150.603						

76.9 71.0 90.586 Total 2:00:00 0.769 Average 92.2 74.0 1.43 70.0 0.693 1.16 89.0 Min 0.831 1.67 97.0 79.0 Max

90.586

Behr Iron and Metal Rockford, IL

	Time	CO2 %	O2%		
•	12:11:00	-0.01	0.01	Cals	
	12:12:00	-0.01	-0.03	Cals	
	12:13:00	3.66	4.4	Cals	
	12:14:00	20.17	21.77	Cals	
	12:15:00	19.62	21.91	Cals	
	12:16:00	18.9	22.01	Cals	
	12:17:00	18.76	22.02	Cals	
	12:18:00	18.8	22.03	Cals	
	12:19:00	16.14	20.45	Cals	
	12:20:00	9.41	12.03	Cals	
	12:21:00	9.62	12.02	Cals	
	12:22:00	9.99	12.02	Cals	
	12:23:00	9.98	12.01	Cals	
	12:24:00	8.05	13.64	Cals	
	12:42:00	0.11	20.77		Ambient air in box truck
	12:43:00	0.1	20.77		Ambient air in box truck
	12:44:00	0.1	20.77		Ambient air in box truck
	12:45:00	0.1	20.78		Ambient air in box truck
	40.47.00	0.45	00.75	T 4	NBM Dankarra Coolea lalat
	12:47:00	0.15		Test 1	NW Baghouse Cooler Inlet
	12:48:00	0.14		Test 1	NW Baghouse Cooler Inlet
	12:49:00	0.14		Test 1	NW Baghouse Cooler Inlet
	12:50:00	0.13	20.75	Test 1	NW Baghouse Cooler Inlet
	12:52:00	0.09	20.76	Test 1	NW Baghouse Stack
	12:52:00	0.09		Test 1	NW Baghouse Stack
	12:54:00	0.08		Test 1	NW Baghouse Stack
	12:55:00	0.08		Test 1	NW Baghouse Stack
	12.00.00	0.00	20.70	1031 1	1444 Bagilouse Glack
	12:57:00	0.07	20.79	Test 1	NW Baghouse Sand Seperator
	12:58:00	0.07	20.79	Test 1	NW Baghouse Sand Seperator
	12:59:00	0.07	20.79	Test 1	NW Baghouse Sand Seperator
	13:00:00	0.07	20.79	Test 1	NW Baghouse Sand Seperator
					•
	13:03:00	-0.01	-0.06	Cals	
	13:04:00	-0.01	-0.06	Cals	
	13:05:00	9.3	11.13	Cals	
	13:06:00	9.72	11.95		
	13:07:00	9.85	11.95	Cals	
	13:08:00	9.9	11.97	Cals	

Appendix F - Field Data Sheets

Isokinetic Sampling Cover Sheet
Test Engineer: ✓ ✓ L 1 ←
Test Technician: ✓ ✓ C

		ı	I	I		Ī
	Project Number: ANS 400 S	Plant Name: ほどん	or Diameter: (.333	Downstream Diameters: >2	Port Diameter: 6"	
Plant Information	Date: 10/6/15	Client Name: 🔵 💪 e hって	Length: Width:		Port Length: O"	Source Condition: Normal
	7 7	Sand Schorder	Circular of Rectangular	1.596	Hope in Duct	5/29
	Run Number:	Test Location:	Duct Shape:	Flue Area:	Port Type:	Test Method: _

			Meter a	Meter and Probe Data			
Meter ID: CM 33		Meter Y Value:	ne:	1.003	∆H Value:	1.748	
Pitot ID: 256		Pitot Coefficient:	sient:	48'	Train Type:	Anderson,	
Nozzle Kit ID GLSS♥7		Nozzle Diameter:	neter:	310	Filter Number/M	/eig	
Probe Length: 3 (cc.)		Probe Liner:		6/15	Thimble Number/Weight	er/Weight:	
Pre-Test Nozzle Leak Check:	2001	0 10	"Hd	Post-Test Nozzle Leak Check:	Leak Check:	11 @ 700.	Hg.
Pre-Test Pitot Leak Check:	0 00.	*	"H2O	Post-Test Pitot Leak Check:	eak Check:	" 20 000	T. O.
						,	

Ports Sampled: 2 Amin/Point: 74 2 Min/Point: Sample Plane (Horizontal or Vertical		Traverse Data
---	--	---------------

Sample Plane: Horizontal or Vertical	
Total Test Time: 720	
Total Points: 24	

Stack Parameters	Static Pressure: - 2 . 0	2%: / / /Avg. $2D_1$ Determined by: Method 3 or Method 3A	Servomex Serial #: (0/446) 35%	Final Imp. Volume or Weight: 2005, 9mp. Volume or Weight Gain: 0,20	Final Silica Weight: 852.8 Silica Weight Gain: 24.5
	Barometric Pressure: 29,4	CO ₂ %: // / Avg. C	Imp and/or silica balance Model and S/N:	Initial Imp. Volume or Weight: 25,7	Initial Silica Weight: 833.3

Comments:

DS-004 Method 5 Cover Sheet

Isokinetic Sampling Field Data Sheet

2004 SIM Bohr Project Number: Client: Plant:

Date: Behr Balcard

5/19/01 Test Location: Test Method:

Page Number: Sand Seperetur 29

Test Number: Operator:

707 MLIP Test Tech: ō 4

	$\overline{}$	_	_	$\overline{}$		_	_	_	_	_	_	γ_	_	1	_		_			_		_	,	_	_	_	
Impinger Outlet Well	000	40	62	120	53	69	20	20	200	26	2	65		25	23	62	8	49	67	29	63	63	7.9	29	50		
Filter Temp °F	200	Vic	17.7	546	180	254	249	255	250	252	246	94,2		250	250	750	254	252	252	256	251	253	250	252	S		
Probe	2	7,45	200	246	1.45	244	22	245	240	442	142	242		253	747	250	253	257	157	252	254	248	249	249	637		
Pump Vacuum,	0	0	2	61	7	5	N	V	0	9	7	1		,	7	2	5	ν	8	5	4	4	2	9	9		
Meter Temp Outlet,	29	6.2	25	53	63	29	29	49	64	69	64	59		22	65	69	69	29	N ₁	B	65	59	65	88	99		
Meter Temp Inlet: °F	61	79	63	63	25	59	49	50	59	R	29	99		49	29	66	65	61	62	62	67	67	89	20	69		
Stack Temp,	49	88	53	63		コレ	64	28	28	200	S	00		70	64	64	60	57	8	Sa	29	20	09	09	9		
Theoretical Meter Volume, (V _m) ft³, total	will idition.	19,036	23.091	26.897	30.703	34.372	38.041	42,366	46.864	51:013	55.590	61,392	67,194	1111/11/12	70,693	74.362	78.031	81.381	84.377	87.727	91.533	96.270	100.507	105.241	012.80	112.716	
S Theoretical Meter Volume, (Vm) ft³, per	3,806	7.055	3,806		3.669	3,669	4.325	4,498	4.152	4.577	5.802	203 5		2,460	3,669	3.669	3,350	7 .996	3,350		737	4.23.7	4.737	3.669	3,806		
ト、プルメ Meter Rate, Cubic Feet/	196	.811	,761	196.	,733	,733	. 865	899	.830	516	1.16	1.16	i	769.	.733	733	.670	599	ᅱ	\dashv		847	147	.7 33	197		
Square Root, ∆P	hh.	7.	.44	hh'	745	24.	.50	25	34	52	19'	.67		ch'	42.	142	38	134	, 20	747	Š	20	isy	24	44		
Meter Volume (V ^m) ft³, Actual	15230	19,080	23,200	26.900	30,820	34.310	38.140	42.45.0	46.980	51.210	55.610	61.280	67.233	67.233	70.730	74.110	78,180	81.520	84.490	_	018.76	96,330	100.440	105.220	109.330	112.912	
y, 4,46 Orifice Setting (△H)	1,88	310.7	1,48	1.88	2.5	120	2	2.6"	2.26	5.64	4,25	4.25		1.51	1.70	01 1	141	1.15	14.1	286	282	7.76	2.83	1.70	381		
(∆P)	02	125	9	20	82	2	25	28	127	57,	. 45	13		16	18	90	S	17/	7			62.	is or	18	2002		
Time	Ch://	11:45	11.50	5511	12.0	12:05	0.21	12:15	12.20	12:25	2.2	2.32	12:40	12:52	15.21	13:02	13:07	13:12	15:17	13:25	15.77	15:35	15.37	13.46	15.4)	13:52	
Port- Point #.	1-1	2	۲۸	۲	N	1		1	a	0	\dashv	٤,		┧	1	M			\top	70		+	0	\dashv	12		+

DS-005 M5 Isokinetic Field Data Sheet

HADINACO		
IMPINGER	WHIGHT	SHEET

PLANT: Be Las Iron & Metal
UNIT NO: NW Gaghouse
LOCATION: Sand Seporator
DATE: 10/6/15
TEST NO: (A)
METHOD: 5/29
WEIGHED/MEASURED BY:
BALANCE ID: 510-37

医腺素类 華	FINAL WEIGHT	INITIAL WEIGHT	IMPINGER	IMPINGER
Circle One:	MLS/GRAMS	MLS/GRAMS	GAIN	CONTENTS
中华市工程等	等品牌新工作。	数点的 不是这		Reference to the later of the
IMPINGER 1	707.4	726.5		
新加州的	三山 医肾髓管 计多数	三型成功的存在了影响这	学期 型品加强的	自。至此在到时间
IMPINGER 2	679.2	665,4		5)
The state of		建造品联系版和 主义。	小规则,是一种发表	建
MPINGER 3	6193	613.6		
	出版的	1000年100日本	南沙南地 在紫峰正 200	世紀 国际原理学业
MPINGER 4	857.8	933.3	e e	
		三、路上等路上海 16 1000 人	1944年1946年1946年19	发展的
MPINGER 5				
14 1 1	也是對於政治主义	在原来学生的正型	L XY 禁錮[編] A.	
MPINGER 6				
				学习为《安康文
MPINGER 7				
	神里地域。	加斯尼斯斯斯 尼斯尼	一人。	高温度。10.22%
MPINGER 8				

IMPINGERS	2005.9	2005,7	0.2
	FINAL TOTAL	INITIAL TOTAL	TOTAL IMPINGER GAIN
SILICA			24.5
	FINAL TOTAL	INITIAL TOTAL	TOTAL SILICA GAIN

Isokinetic Sampling Cover Sheet Test Engineer: \mathcal{MLIR}

Run Number: 2 Test Location: Send Seperchor Duct Shape: Circular or Rectangular Flue Area: Hole in Buch Test Method: 5/2 9	Date: 12/6/5 Client Name: 6ehc Length: Width: 6	Project Number: MIS 400S Plant Name: 15ehr 19ock Ard or Diameter: 1.333 Downstream Diameters: >2
Meter ID: CM32 Pitot ID: 256 Nozzle Kit ID CSCS 7 Probe Length: Feet Pre-Test Nozzle Leak Check: 002 Pre-Test Pitot Leak Check: 002	Meter Y Value: 1,00 3 △H Value: 1,00 3 Pitot Coefficient: 640 Train Type: Train Type: 1,00 5 Nozzle Diameter: 640 2,10 Eilter Numb Probe Liner: 640 Frimble Numble Numb	AH Value: 1,74% Train Type: Anderson Filter Number/Weight: 8752/, 44/3 Thimble Number/Weight: 6752/, 44/3 Leak Check: .ooz @ 12 "Hg eak Check: .ooz @ 12 "Hg
Ports Sampled: 2 Total Points: 24	Traverse Data Points/Port: 12. Total Test Time: 12.0	Min/Point: Sample Plane: Horizontal or Vertical
Barometric Pressure: 14.40 CO ₂ %: / / Avg Imp and/or silica balance Model and S/N: Initial Imp. Volume or Weight: 22.2	Static Pressure: -2.0 Avg.	Avg. ファ. Determined by: Method 3 or Method 3A Servomex Serial #: らずりの S53 で Tho. Volume or Weight Gain: (6.7 Silica Weight Gain: (8.)
Comments: DS-004 Method 5 Cover Sheet	Post-Test Nozzle Verification:	1) 2) 4) 4)

Test Method: Date: Scotsly Behr De hr Project Number: Client: Plant:

Test Location:

3/19/01 Sar

Page Number: Test Number: Operator:

MLIP

Test Tech: NCC ŏ

	Impinger Outlet Well Temp. °F	29	اري اري	20		M W	79	20	19	- 9	00	00	09		~	19	29	63	N 0	6	53	63	29	29	62	29		
	Filter Temp. °F	2,18	250	5 2	245	247	251	052	152	25/	252	251	249		228	642	250	152	250	151	250	250	222	65.2	642	052		
	Probe Temp. °F	254	250	544	240	245	250	250	247	2,12	247	276	2,12		2,3	248	842	542	255	254	250	152	542	542	2,12	250		
	Pump Vacuum,	3	4	6	2	W	2	3	2	7	9		b c		ላ	7	7	7	V	5	7	V	9	1	K	సం		
	Meter Temp Outlet,	17	12	75	72	1/	8	20	20	71	71	22	2		73	75	75	22	75	26	72	75	75	75	72	12		
	Meter Temp Inlet, °F	20	69	70	10	70	7/	71	7/	72	75	72	73		Ē	22	73	73	73	13	14	14	74	74	74	73	,	
	Stack Temp,	67	% \$9	49	49	B	-	99	99	99	67	67	67		173	73	121	70	89	90		63	63	63	491	49		
	Theoretical Meter Volume, (V _m) ff ³ , total	man	118.603	122,125	125.535	128.945	131.729	134.779	138,908	144.117	925. PH	154.384	160,290	166.063	222	169.590	172,527	177,464	181.162	185,009	188,393	191.915	186.891	1 99,374	185:502	528:112	150.812	
	Theoretical Meter Volume, (Vm) ft³, per	8.69.8	3,522	3.410	3.410	2,784	2,050	4.129	5,209	5,209	5.05 &	€. 906	5.773		3.410	3.937	7.937	3.698	3,937	3.294	3.410	27252	3.937	6.163	882.9	6.226	,	
1.76	Meter Rate, Cubic Feet/	739	704	.682	.682	955'	019'	.825	1.04	401	10,	81.1	1.15		289	787.	181	739	787.	,658	289"	hCL'	187	1,23	1.25	1.24		
-	Square Root, △P	77	ch.	.38	.38		34	94.	651	59	12.	47	59.		.38	44,	44.	72	144,	,37	35.	CH.	22	5	17.	70		
	Meter Volume (V _m) ft³, Actual	114905	119.70	122,320	125.660	046.821	131.970	13.820	139.160	022,441	149.450	154.510	160.390	081.991	166,180	011.691	C27.271	177.520	141.350	185.410	188.390	191,710	195.780	055'551	018 502	211,950	219.051	
	9.556 Orifice Setting	1.72	152	1.43	1.43	0.95	1.14	2.10	2.34	2,34	2,15	4.30	4.10		1,43	0	1,9,1	1.72	- 9	1,33	1,43	751	1,72	2,68	4.87	4.7		
	(V)	18	10	z.	is	0.	7	22	25	25	23	1	Eh.		· is	22.	20	81.	20	2	15	9/:	18	64	15.	53		
•	- • • • • • • • • • • • • • • • • • • •	Ch: H	74.4C	CS: FI	14.55	15.00	50.51	15:10	15:15	5.20	15.25	5.33	K 35	5.50	15.52	15.57	20:91	16:07	16.12	16:17	16:22	16:27	16.22	16:27	24.95	16, 17	18:51	_
	Port-	1	7	2	2	8	O	7	. %	2	c,	=	7		2-1	73	M	2	Ŋ	v	2	Ų.	0	0	=	2		

A	IMPINGER WEIGHT SHEE
PLANT: Behr IT	on + Metal
UNIT NO: NW BO	ghouse
LOCATION: SENO	Separator
DATE: 10/6/15	
TEST NO:	(A)
метнор: 5/29	
WEIGHED/MEAGURED BY	MET

	FINAL WEIGHT		INITIAL WEIGHT		IMPINGER		IMPINGER
Circle One:			MLS/GRAMS		GAIN		CONTENTS
IMPINGER 1	723,7		734.7				
事業主義		in i	學學學學學	经规则	Jan Bar		W .
IMPINGER 2	734.)		720.8				
	er izaniaki.	e CL					
IMPINGER 3	651,2		646.8				
				Walter I	學的可以對於	至學	
MPINGER 4	877,7		859.1				
一点,	国自己的政治的		是是一种是大学是是			33/8	
MPINGER 5							
			正成为祖 经财务 基	-	PLANE SERVICE		
MPINGER 6							
20世紀10年		24	學學問題人可能				国政党 网络河
MPINGER 7							
	计算程序设计		學問題的經濟學			學學型	
MPINGER 8						N.	A CONTRACTOR OF THE PARTY OF TH

IMPINGERS	2109.0	2102.3	6.1
	FINAL TOTAL	INITIAL TOTAL	TOTAL IMPINGER GAIL
SILICA			18.6
'	FINAL TOTAL	INITIAL TOTAL	TOTAL SILICA GAIN

BALANCE ID:

Isokinetic Sampling Cover Sheet
Test Engineer: N. L.T.P.
Test Technician: N. C.

nation	er:	Plant Name:	or Diameter: \\333	Downstream Diameters: >2	Port Diameter: $6^{1/}$		obe Data	S △H Value: 1, 748	Train Type: Anderson	Filter Number/Weight:	Thimble Number/Weight:	Post-Test Nozzle Leak Check: 130 2. @ 13 "Hg	Post-Test Pitot Leak Check: ,000 6 4 "H20		Data	Min/Point:	Sample Plane: Horizontal or Vertical
Plant Information	10/	ne:	Length: Width:	Upstream Diameters: 2	Port Length:	Source Condition: Morma	Meter and Probe Data	Meter Y Value: 1,003	Pitot Coefficient: , 84	Nozzle Diameter: 300	e.	@ /2_ "Hg Post-T	"H ₂ O	,	Traverse Data	Points/Port:	Total Test Time: 120
ı	Run Number: 77-5	١.	Duct Shape: (Circular or Rectangular	Flue Area:	Port Type: Hole 11 Dict	Test Method: 5/29		Meter ID: CM33	Pitot ID: 256	Nozzle Kit ID (25) Social		Pre-Test Nozzle Leak Check: , o o ! \$	Pre-Test Pitot Leak Check: , 000			Ports Sampled:	Total Points: 24

. Min/Point:	120 Sample Plane: Horizontal or Vertical	Stack Parameters	7,0	/ /Avg. 20, 7 Determined by: Method 3 or Method 3A	Servomex Serial #: >14407/3537	Final Imp. Volume or Weight: 2029.7 Imp. Volume or Weight Gain: (7, 9)	SSC , (Silica Weight Gain: (6, 9)
Points/Port:	ime:	Stack Pa	Static Pressure:	O ₂ %:	C/0-27	Final Imp. Volume or W	Final Silica Weight:
Ports Sampled:	Total Points: 24	Library	Barometric Pressure: 7 4.43	CO ₂ %: / / Avg. CO	or silica balance Model ar	Initial Imp. Volume or Weight: 20168	Initial Silica Weight:

Comments:

Post-Test Nozzle Verification:

Rev. 1.0

poor Test Location: Test Method: Date: 200451M Benc Project Number: Client: Plant:

Seperator

MLIP Test Tech: NCC ₫ M

2

Page Number: Test Number: Operator:

	Impinger Outlet Well	Temp. °F	15	2000	7	29	5	64	6 1	63	52	2	ر م		6 /	19	29	63	63	ا ا ا	> <	. 0	> C	62	62	5 2			_
- 2		Temp. % Te	+	+	Ť	251 6	ŋ	_	251	250	250	250 6	152		_	250		248	252	25)	652		252	251	250	250			_
		Temp. % Te			275	2 152	250	. 152	254 2	2 46 7	2 842	250 2	25%			243 6	250 6	254 2	2 952	2 32 2	255	2 47 2	250 0	250 2	1.67	347 2			_
	, c	"Hg C		1/2			_		7	7	2	3			7	_	. 7			-2-	2	7			44				
	<u>ار د د د د د د د د د د د د د د د د د د د</u>	ቡ <u>የ</u>	77		1/	20	20	72	75	7/	71	11	20		69	88	69	69	69	96	69	67	67	67	99	66			
	Meter Temp	Inlet, °F	5 6	77		73	73	<i>bL</i>	74	73	73	73	73		89	68	70	70	70	50	70	69	69	63	64	69			
	ي م	# 5 2	- V	700	79	49	49	49	_	79	49	66	49		- '		50	20	2	_	5.0	300			\vdash	18			_
	Theoretical Meter Volume, (Vn) ft³,	total	224050	7.7 0921	232.816	236,701	240,500	244,163	247,826	252, 259	256.5%	259.400	262,603	265.747	11111111	269.450	272.614	275.958	279.152	282.346		2 90,092	294,410	297,273	301.245	305.130	424,805		
•	Theoretical Meter Volume, (Vm) ft³, per	point	7,083	3,716	3,885	3.799	3.663	3.663	4,403	4.3175	2,863	3.844	3,194		3.540	3.194	3,344	3.194	3.194	3.344	4.403	4.317	2,863	2,972	3,885	3, 344			
1.727	Meter Rate, Cubic Feet/	Min.	7/2	77	.77.	.75	.73	.73	00 00	98,	151	99.	. 63		.70	₹9′	99'	.63	59'	66	100		25'	179	177	.66			
	Square Root,	4 ک	777	277	1 5 5	hh'	24'	24.	,50	\rightarrow	.33	,38	.37		14'	137	•	.37	137	.38	R	os'	.33	,46	.45	35'			
	Meter Volume (Vm) ft³,	Actual 2 2 2 0 7 U	225 110	27 8 790	232.920	236.900	240.770	244,420	248.020	252.460	256.710	254.650	262,600	265.880	CAB 39%	269.500	272,710	276.020	279.410	282,350	285.860	290.320	294.750	297,440	301,420	305.260	308.50		
-	Orifice Setting	(AH)	100	107	1.97	1.83	1.65	1.65	2.38	57.2	101	1,37	1.28		1.56	1,28	1.37	82.1	821	1.37	2,29	2.29	1,01	2.02	261	1.37			
-		(AP)	22	212	12.	or'	,18	81.	97.	, 25	///	51.	141.		11	41.	5/.	141'	171*	.15	.26	. 25	111	22	12,	510			
-		Time	77.76	2 2 2	7 55	8.8	18.05	01.81	18:15	23	52.8i	18.30	156.35	CF. W.	18:81	18.56	10 61	19:06	11:6	91 61	12 51	97 .	16. 6	95 11	14 6!		19 51	,	
	Port	Point #		+	+	5	9	7	00	6	0	-mag-	7.1		2-1	7		>	h	9	7	**	Ç.	2	11	7			

IMPINGER WEIGHT SHEET	r
PLANT: Behr Iron + Metal	
UNIT NO: NW Baghouse	
LOCATION: Sand Separator	
DATE: 10/6/15	
TEST NO: 3 (A)	
METHOD: 5/29	
WEIGHED/MEASURED BY: MEA	
C 14 37	

	FINAL WEIGHT	INITIAL WEIGHT	IMPINGER	IMPINGER
Circle One:	MLS/GRAMS	MLS / GRAMS	GAIN	CONTENTS
企业各类协 应				
IMPINGER 1	728,1	727.9		
		建 图数2数图页图	5	
IMPINGER 2	684.3	673.6		
	4.			
MPINGER 3	616.7	615.3		
中欧洲东河北	200			
MPINGER 4	856.5	83916		
公司巴斯阿				
MPINGER 5				
建筑市场船			Mary IS NOT THE REAL PROPERTY.	
MPINGER 6				
	等性熱學學學是			
MPINGER 7				
		医多种 医脂肪酸		
MPINGER 8	14			

IMPINGERS	2039,7	2016.8	12.9
;	FINAL TOTAL	INITIAL TOTAL	TOTAL IMPINGER GAIN
SILICA			16.9
-	FINAL TOTAL	INITIAL TOTAL	TOTAL SILICA GAIN

Isokinetic Sampling Cover Sheet Test Engineer: $\frac{RKS}{DK}$

Plant Information	Date: 16/10/2015 Project Number: MISYOAS INC. Client Name: 1864 Sous (Inc.) Project Number: 275 Proposition:	Meter Y Value: ハラウ AH Value: ハフロム Neter Y Value: ハラウ AH Value: ハフロム Neter Y Value: ハラウ AH Value: ハラン A A A Value: ハラン A A A A A A A A A A A A A A A A A A A	Points/Port: 20 Min/Point:
	Run Number: Test Location: Duct Shape: Flue Area: Port Type: Test Method: An 120	Meter ID: CATTON Pitot ID: A Probe Length: Probe Length: Pre-Test Nozzle Leak Check: CATTON Pre-Test Pitot Leak Check: A Pre-Test Pitot Leak Check	Ports Sampled:

Sample Plane: Horizoatal or Vertical	SrS	Static Pressure: 7 / Avg. 2.D. 9 Determined by: Method 3 or Method
Total Test Time: 1.0	Stack Parameters	Static Pressure: O2 %: Sto 37 Final Imp. Volume or Weight: Final Silica Weight:
Ports Sampled: 40		Barometric Pressure: 29.36 CO2 %: / / Avg. © Imp and/or silica balance Model and S/N: Initial Imp. Volume or Weight: 14.56 Initial Silica Weight:

Comments: Nozzle from 211
the zetz During Petthers

Post-Test Nozzle Verification:

3/2/2015

DS-004 Method 5 Cover Sheet

3/2/2015

Isokinetic Sampling Field Data Sheet

MISYMOS Or oh Project Number: Client: Plant:

Why a Sons in Test Location: Test Method: Date:

NW Bagnouse 10/0/018

Page Number: INLET Operator:

Test Number:

Test Tech: 2/LοĮ

								_										-	,					ı				_
Impinger Outlet Well Temp. °F	79	29	و د	7 9	2	3	20	79	3	79	2	ć,	2	5	2	47	202	ري وي	65	وي		75	₹	3	2	2	وم	وم
Filter Temp. °F	25°	237	257	258	757	200	256	761	7/92	960	258	252	257	260	2601	261	990	260	2.61	260		260	Ö	952	255	256	ુ જ	152
Probe Temp. °F	250	746	247	245	246	243	なべ	751	S S	250	747	252	250	262	27.0%	26		2101	200	264		20	Ã	240	270	257	243	23
Pump Vacuum, " Hg	4	و	e	9	7	7	2	٦	7	7.	9	7	7	3	*	2	۲	3	ላ	3		×	•	0		ō	9	•
Meter Temp Outlet,	09	ما	5	20	20	6 %	30	66	0,0	00	00	66	66	66	66	66	99	clo	9	00		6,0	(0)	100	9	و و	9	e e
Meter Temp Inlet, °F	30	65	S.	00	50	وک	62	68	63	20	6	57	59	B	69	63	59	69	63	Ś	,	Ŝ	5	80)	89	68	105	\$
Stack Temp,	200	16	200	20	201	10>	101	105	711	26	56	93	1.6	90	96	,90	96	96	83	ንላ		5.60	5,0	£,	Γο	109	111	44
Theoretical Meter Volume, (V _m) ft³, total	then	20 030	856.02	11.005	42 376	45.627	47633	<u>ተ</u> ፈር .	LAT 15	51.97	151.45	55.436	30.765	58.074	(5. 40)	40.00	81519	65,130	EAN 10)	65 253	de. 466	44100	167-167	841. ct	812 31	73 B	81.920	235. HS
Theoretical Meter Volume, (Vm) ft³, per	2.56	795.8	7 667	1 7	2.25	2.066	2030	1724	02h1	1,234	1.284	1.329	1.309	1.333	1,265	1241	1.2.17	1.033	1.095	1. 208		3.697	1866	3.175	2.304	3.798	3.046	2.6%
Meter Rate, Cubic Feet/																												
Square Root, △P	1.0VG	1,225	1,265	456.0	886	366	5/18	74.	0)1.	<u> </u>	525	875	525	528	.572	210	025.	24.	7µ4,	190		Sing!	200	(2)	1.049	1.049	026	£43
Meter Volume (V _m) ft³, Actual	32.58	35 500	28 UND	220.14	43.385	40,630	47.70b	046.PH	51.400	256.67	54.155	55.40	516.770	58.089	79. LIS	60,681	161.925	135.135	64. 16S	65.240	OCT-001	06×40	(A). (B)	25 50	225,31	78.633	81.920	21.6 hb
Orifice Setting (△H)	2	2.0	4	4	00	١٧.	27.	0.	ング	ı C	,57	-9	0.9	9	25	5	[J	27	Ē	2		2.5	2.5	35	مي ا	ν; Φ	3.2	2.5
(AP)	-	V	27.	क	¥	X	5	Ġ	28	26	2	.26	2	32	127	13	27	8	20.	7.7.		7	*	0		 	44	١٢.
Time	7.7	25	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	57	2 2	3	200	10,0	70,00	2,03	5.6	1113	2	0/2	Ci Pro	77	11.28	11.31	1234	[73]	47.2	122	1753	125%	1201	-3- G	14.01	1310
Port-	-		30	7	. 0	3	-	⊘	£5	-	- Amy	2	.2	2	77	25		Z	ح	22		2-1	4	^ر	3	77	٩	-

901770140

MIGHAS Project Number:

Client: Plant:

Behy & SONS

ROCK GANS

Test Location: Test Method: Date:

Page Number: Also Religious (Meet Operator:

Test Number:

of 345

Test Tech: DIC 中

	_	_	_		_	_		_	_	_	1		,	1	,	 ,	 _	 _	_	_	_	_	_	_	
Impinger Outlet Well	remp. r	1020	.0	So	65	ð	20)	Ž.	Č	39		200	200												
Filter Tenn of	\$57	257	500	250	260	260	202	354	12	25.2	120 140 140	24.	2705												
Probe	100	45%	Ç	24.			かん			25	7:01	0616	7.5.0												
Pump Vacuum,	9	ę.	Ďο	0.	و	7	2	10	حاليه	· in	÷,	>.	>-				,							-	
Meter Temp Outlet,	- 63	(0)	67	67	67	67	62	47	2	50/	00	a.	C			_	-								
Meter Temp	2	20	20	20	11	11	11	21	u	n	4	2	2.												
Stack Temp,	42	33	36	93	53	93	93	3	90	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	200	0	51												
Theoretical Meter Volume, (Vm) ft ³ ,	47.634	90,003	92.76%	95.273	97.111	98.805	100.500	152, 10	12.32	105, TW!	1010438	108.737	104.540	111 185											
Theoretical Meter Volume, (Vm) ft³,per	2 5 %	2250	7 65.8	1.838	1 694	1.654	1.601	1432	1.1005	1007	Lunc	1,453	1.595						_						
Meter Rate, Cubic Feet/																									
Square Root, △P	218.	ንክረ.	186	λ <i>ι</i> 5:	. C.5	.525	005	5.5°	જું.	· YKo	6	C. 25.	٠ (و)											``	
Meter Volume (V _m) ft³, Actual	87.660	90,250	522.46	95.285	m.180	218.86	100.523	211.001	107.540	105.10	69. 00/	10 % Ho	10,00	111.155											
Orifice Setting (∆H)	2.3	2.2	22	7.	. 95	55.	No.	<u></u>	, 89	23	7	73	- CO												
(A ∆)	99	. 63	,62	.33	.28	28	22	07	25	:23	oJ.	200	24	_											
<u>ш</u>	212	غ) <u>(۱</u>	17.19	1822	2	ر چ	, ,	П		070	7.5 45	27	345												
Port-	2-6	0	40	~	12	Z)	3	Y	5	7	V	Z.	0												

IMPINGER WEIGHT SHEET
PLANT: Bent Iton of Metal
PLANT: Behr Iton of Metal UNIT NO: NW Bag Lorese
LOCATION: Gas Cooler Inlet
DATE: 10/6/15
TEST NO:
METHOD: 5/29
NEIGHED/MEASURED BY: MEP
BALANCE ID: 510 - 37

	FINAL WEIGHT	INITIAL WEIGHT		IMPINGER
Circle One:	MLS/GRAMS	MLS/GRAMS	GAIN	CONTENTS
		建设是一个工程,		
IMPINGER 1	701.)	729.5		
	100	性語為自由中華	· 外表的 华世里多斯 医	
IMPINGER 2	633.2	612.8		
	MAST AFFECT AND STATE			
MPINGER 3	621.9	612.7		
在 对 些 主			15 时间 建二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十	
MPINGER 4	849.8	828.0		
		建筑地震和影点影响服务		
MPINGER 5				
是指定位的	特局主题的	沙 里斯一种加坡 烈星亚	AND THE STATE OF T	DOKE THE PERSON
MPINGER 6				
	是沒有的原本。	3月時期25月第1日	第一个	
MPINGER 7				
的制度	AH 10 JUSTA 200	L Distriction of the Control of the		建设设计划建设 工
MPINGER 8				

IMPINGERS	1950.2	1955.0	1.2
	FINAL TOTAL	INITIAL TOTAL	TOTAL IMPINGER GAIN
SILICA	· 		21.8
•	FINAL TOTAL	INITIAL TOTAL	TOTAL SILICA CAIN

Isokinetic Sampling Cover Sheet Test Engineer: じんじつ

Plant Information	Run Number: न्दिर Code / भूभ कि कि कि कि कि कि कि कि कि कि कि कि कि	Meter ID: つかに ころう Meter Y Value: 予名の AH Value: インのチャント Pitot Coefficient: ダイ Train Type: インのチャント Pitot Coefficient: ダイ Train Type: インのチャント Probe Liner: トロンス	Traverse Data Ports Sampled: 2 Min/Point: Total Points: 10 10 Total Test Time: 10 10 Sample Plane: Montzonal or Vertical	Barometric Pressure: Static Pressure: Static Pressure: Static Pressure:
	Run Numb Test Locat Duct Shap Flue Area: Port Type: Test Meth	Meter ID: Pitot ID: Nozzle K Probe Le Pre-Test Pre-Test	Ports Sa Total Po	Baromet CO ₂ %: Imp and Initial Im

Rev. 1.0

3/2/2015

Post-Test Nozzle Verification:

Comments:

The low There NI GHOOT Project Number: Client: Plant:

(sche

Test Location: Test Method: Date:

Cooke lyln Promose In 10/16 1ais 5617

Test Number: Operator:

Page Number:

Test Tech: 1/1/2 oę 女と

	Τ-	Т	Τ-	Г																		_	ļ		_		r—	_
Impinger Outlet Well		ê	62	2,2	79	55	67	3	2	209	209	<u>ئ</u> ر ق	29	かの	12	34	¥.	S	(0)	(0)	(3)	59	رى	် မှ	i. 9	67	\$, Q
Filter Temp. °F	25	252	2,02	257	236	252	スタ	SS.	25.2	263	252	256	CX.	260	36	760	260	25.8	25	255	(100)	198	255	260	275	25.8	240	207
Probe	250	25%	248	255	2 48	132	25,	252	200	754	250	252	250	25%	250	152	260	263	154	1281	250	25/	250	252	87	15%	250	253
Pump Vacuum,	Q	د	و	Q	J	_0	7	-9	V	ر	5	×	7	7	7	>	'n	ح	3	3	3	1	7	7	7	7	٥	8
Meter Temp Outlet,	13	5	70	70	26	11	١,	16	11	11	11	21	7/	16	11	č	25	n	73	7.	۲	73	72	ĭ	74	74	75	22
Meter Temp	13	74	73	74	14	14	74	22	73	7.8	73	73	73	7	75	7	16	ነ	رد	٠Ę	יר	73	g 0	70	,50°	ď,	83	83
Stack Temp,	36	20	25	36	26	26	97	93	93	93	94	700	100	16	44	28	00/	101	9	28	40	2	**	90	હ	4 5	93	26
Theoretical Meter Volume, (Vm) ft³,	10000000	15 277	18.227	21.117	23.64g	26-868	30.002	32 118	24.943	37.713	40.245	42, 125	43.535	45.773	47.685	49 450	\$8015	47.594	570.07	55.84	56.926	1	10. 486	ויאל לאל	57 9ET	71.034	74.086	74.493
Theoretical Meter Volume, (Vm) ft³, per	37.73	2953	2890	2.523	3,723	3.153	2.056	2,826	2,770	2536	1.876	1.80	1.838	1.81	1,745	1, 638	3 cs.	(13h	8647	1,460	.513	2502	3.259	3210	3.129	3.∞2	2.80b	2610
Meter Rate, Cubic Feet/																												
Square Root, ∆P	1.645	226	900	187.	001	.99°	070	. 877	ر چود د	787.	.583	300	374	.532	% ħ5.	510	HBS.	744,	834.	,447	,480	1,049	000-	.585	923	22) \$\\ \	00°.
Meter Volume (V _m) ft³, Actual	376	15.280	19.230	21.120	059.22	228 25	30, 170	32.127	34.955	87.725	40.255	42.130	446, 54	45.777	47.6.90	49.462	51.090	52600	54.040	55.533	56.581	285.08	61.488	E B	(et. 9/es	71 090	74.096	76.50n
Orifice Setting (△H)	5%	3,0	6.6	、	3.5	2.5	٦.	& . ~6	نہ	4	Ġ	1.1	-,	1.7	-2	2.	۲۲.	.73	21.				3.6	3.5	7 3	3.0	にん	2.3
(A)		35	.81	102	0	% %) / /	1	یر	· lor	<u>ئ</u> ر	25	. 33	35	.30	20	22	.10	-	07:	22.	7.7	9.	.77	-6.2	\$	Ŧ	Ž.
<u>\$</u>	57.71	2×4/	1446	1449	1541	1455	145%	(50)	15.64	15 m	15 10	11 12	11 16	7 i 'G	15 22	15 25	(13)		15 33	(5.37	2 2 2	1552	1555	1558	1091	1604	1607	1610
Port-		ري	60	.5	ما	٠.	30-	\$ e	N	6	177	8)	gov.	3		150	6/	3/	ě.	3		-		>)	5	<u>_</u>	٠	

DS-005 M5 Isokinetic Field Data Sheet

Rev. 2.0

Isokinetic Sampling Field Data Sheet

MISHOOS Project Number: Client: Plant:

Behr + Sors Inc 1.ckGRD

Test Location: Date:

10/10/2015 Test Method:

Colere / Na Baginate 1 Operator.

Page Number: Test Number:

2016 Test Tech: of 2 B

	_	_		_					_				_			_		 	1	_	_	
Impinger Outlet Well	å,	20	,0	3	20	la 9	Z E	20	7.9	X. 0"	٨	r	29								!	
Filter Temp. °F	240	253	255	422	202	692	વક્દ	255	242	134	ST	152	252									
Probe Temp. °F	350	22	253	25.3	251	250	28	254	250	26.3	250	252	2.75									
Pump Vacuum, " Hg	200	e	7	30	M	3	3	3	3	~	5	3	3									
Meter Temp Outlet,	26	75	200	26	12	$L\iota$	ረኒ	34	56	18	4	51	52									
Meter Temp Inlet, °F	83	28	3/2	28	28	28	W	83	28	82	28	2.8	18									
Stack Temp,	94	%	36	96	97	42	97	97	46	4	91	36	90									
Theoretical Meter Volume, (V _m) ft³, total	79.97	\$1.853	83.776	95438	37.537	297 68	91.593	94.157	96.213	98,174	100-167	102 - 106	103.5cm	105,461								
Theoretical Meter Volume, (V _m) ft³,per	2 3.00	[.923	1.720	2,000	2,207	2.231	2.158	2.002	1.961	1.994	1935	1.886	1,469									
Meter Rate, Cubic Feet/																						
Square Root, △P	72	. 522	. 529	.632	.6x	. (94.le	. 1063	.632	cooq ·	. 608	.592	YLS.	1.447									
Meter Volume (Vm) ft³, Actual	79.521	81.966	82.788	005.5%	37,870	29.76	9. 000	94.165	96.215	98,80	100, 170	102.[10	162.535	SC4.501								
Orifice Setting (△H)	ú	1.7	0.1	h'/	160	1.7	1.0	J.d	1.3	1,3	1.3		.73									
(o)	53	, 35	.28	.40	. ሳ(۲۲,	,4H	0 h	95,	:37	.35	.37	20									
Time	2 -	21 9	1619	110 22	16 25	16 23	16 31	16 34	(b 3)	16 40	5	16. 46.	ખું નુ	1653								
Port-	200	6	0/	11	2)	/3	14	¥	٩	٤	>0	2	20									

IMPINGER	

PLANT: BENT STOND METAL
UNIT NO: NW Baghouse
LOCATION: Gas Cooler Enlet
DATE: 10/10/15
TEST NO: 2
METHOD: 5/29
WEIGHED/MEASURED BY:_MEP
SIA 37

		INITIAL WEIGHT	IMPINGER I	IMPINGER
Circle One:	MLS / GRAMS	MLS/GRAMS	GAIN	CONTENTS
				Electrical services
IMPINGER 1	696.6	7090	(Care 100 -	
		美国的国际人员		
MPINGER 2	76516	751.4		
THE REAL PROPERTY.				1.2
MPINGER 3	715.4	711.0	72.7	Ž.
在 18 由和 1970	為自由於開發到度			从均加加速度至
MPINGER 4	838.3	820,0		
	的原始是是	3000年7月19日11年7月1	2008年100日 100日	
MPINGER 5				Y Allerton
10. 全部 标注	"是是一个是对有效的			Vice Assessment
MPINGER 6				
公在导热是是	为"全国和第四年代"	型 等	中国海州市场房间	
MPINGER 7				DESCRIPTION OF THE PROPERTY OF
			is platficust at the	Sugar a service and
MPINGER 8	纖	属		propriet the ground regard

IMPINGERS	2177,6	2171,5	6.1
	FINAL TOTAL	INITIAL TOTAL	TOTAL IMPINGER GAIN
SILICA			18.3
	FINAL TOTAL	INITIAL TOTAL	TOTAL SILICA GAIN

Isokinetic Sampling Cover Sheet Test Engineer: \mathcal{BRS} Test Technician: $\overline{\mathcal{DMR}}$

Plant Information	Date: 16/6/26/5 Project Number: MIS 4005 Client Name: 25~45~5 Plant Name: 26~46~6~6~6~6~6~6~6~6~6~6~6~6~6~6~6~6~6~	o	Upstream Diameters: >.Ś Downstream Diameters: >2	Port Length:	Source Condition: ** * * * * * * * * * * * * * * * * *	Meter and Probe Data	Meter Y Value: 1. 103	₹.	Nozzle Diameter:	Probe Liner: C. (15.5 Thimble Number/Weight:	-Test Nozzle Le	"H ₂ O Post-Test Pitot Leak Check:	Traverse Data		Total Test Time: 128 Sample Plane: Horizontal or Vertical)
	CONTENT TO BOTHOUSE IN	ectangular	0140	Port Type: NI 1916	od: Mrs		Meter ID: //u/v/b Meter	Pitot ID: Pitot C	W. 147. dl 1	0 55	Leak Check: 0 @	Pre-Test Pitot Leak Check:		Ports Sampled: 2 Points	Total Points: 40 Total	

| Avg. 20, 3 | Determined by, Method 3 or Method 3A | Servamex Serial #: 0/44の1/5/3 8 Post-Test Nozzle Verification: Stack Parameters Final Imp. Volume or Weight: Final Silica Weight: Static Pressure: 02%: Imp and/or silica balance Model and S/N: Initial Imp. Volume or Weight: Barometric Pressure: _ Comments:

C-122

3/2/2015

Bohr 450215 ROCKGAD MIS 400S Project Number: Client: Plant:

Test Location: Test Method: Date:

Now Bachava INE Operator. 5119/01

Page Number: Test Number:

Test Tech: Alice οĘ 34 180

<u>. </u>		1	\neg					П							\neg		\neg			П		\neg	Ţ		\neg				\neg
Impinger Outlet Well	-	4	53	9 1 %	25	25	25	56	27	2.2	20	ζ	ĺδο	5.5	C	2	£ 3	57	12	L	27		S	Ş	g S	દ	2	G	₹,
Filter Tema 65	dulp.	557	3	ů.	75	260	760	25.3	250	542	25.3	248	253	15-6	£32	257	247	とらく	250	25.3	22		260	259	ار چ	ż	252	25.2	248
Probe	i (9	\$	255	720	252	20	248	2.50	250	75	250	257	250	340	250	250	257	310	787	25%		ŠŠ	305	2615	260	265	257	220
Pump Vacuum,	50	و	e.	7	9	ڡ	Ŋ	5	5	5	5	×	٨	4	4	3 .	~	2	M	>	r		4	4	h	٨	۲۷	J.	1 ,
Meter Temp Outlet,	_ (2	18	1 86	36	82	11	12	7	76	76	76	75	26	74	7.	74	7.	24	74		7	1/	7/	1	1/	11	11
Meter Temp		17	20	80	18	8	18	80	08	18	/8	9,8	80	28	3%	2	77	11	22	77	2		7	73	75	26	70	76	76
Stack Temp,	L \	õ	29	98	90/	8	65	86	9 5	101	8.6	42	16	86	28	35	9	36	38	<u>a</u>	28		G.	76	25	Z	J.C	\$	93
Theoretical Meter Volume, (Vm) ft³,	TOTAL	The state of the	12 023	15.726	19.132	22.210	25.22	27,935	30 346	32.265	37.13	25.680	37.457	59.253	982.14	43.252	45.138	47.078	48.848	50. lalla	52 22	52.536	#trotase	1.10.957	194.986	68.313	126,759	G9. 980	73,203
Theoretical Meter Volume, (Vm) ft3, per	DOINT POPUL	3.5.56	3.703	3.400	810.5	2012	0.77	2.406	1.920	1.859	1,52.6	1.777	1.835	1.993	9951	2587	1.925	0111	1.770	1.707	1.6119		3.007	3.05	3.347	2387	3,220	3.2.to	3.197
Meter Rate, Cubic Feet/	- Li																												
Square Root,	. □	1.85	OH-I	1.049	949	25	. 837	74%	57.2	774	. 480	.578	566	قاق	62.00	583	83	875.	\$ 15.	529	.500		1.938	5N6.	7.649	1-045	000	- op	065'
Meter Volume (Vm) ft³,	Actual	08.487	P. 055	15.735	9. lyr	2,20	25.240	Jhs.Le	30 355	32 275	37,160	St. 688	37. 480	39,300	4. 26.5	43.265	0h1.Sh	47.085	18.875	50.637	52.340	53.920	53.550	396.95	23.63	582.50	50700	69.99V	73.215
Orifice Setting	(חב)	٠,	9.	2.5	7.7	3.1	بما (2.0	1,7	1.5	Ŝ.	1:1	17)	5.3	7.3	5	1.3	17	**************************************	0,1	68.		75	3.6	3.40	3, 4 b	3.5	3.5	3.5
í		1.	<i>i</i> .		0,	95,	200	4	,35	12	.23	30,	25.	. 38	ري	μŞ.	15,	,30	0)	12	.25		88	, 89	<u>-</u> -) 11	-0	0.]	00.
į	all li	127	138	1	777	7 2	SS	35	රිට	20	10 E	20 0	50.50	7 01	10 14		07 ×	i —	13 26		12 N	35 1	18:51	18:54	18.57	00 5	(g) 03	90 5	408
Port-	Foint #.		2	20	3	<u>ر</u>	e,	7	90	\vdash	9	H	2	وكتو	7	le de		Ţ	16		40	,		~	*	ح	4	د	7

Bdu + Son 15 RackfaD 500h 511M Project Number: Client: Plant:

Test Location: Test Method: Date:

51/01/01

Page Number: NW Boilow INLET 125

Test Number: Operator:

설	1
Test Tech	oť
17 37 17 37	N.

Impinger	Outlet Well	3	20	2	20	[M	5	4	5 17	5	7	2,2	1								i							T	
=	Filter Temp. °F 1	-	200	25	2,7	253	12	7	7	253	1257	250	4	25.3																
	Probe Temp. °F	S. C.	1		200	3	27	2	253	200	1.57	137	272	250																
	Pump Vacuum,	2	3	> -	3	d s	, ,	ا ا	. 4	À	101	84h	la	*	3													1		
Meter	-	13	1	7	1		i	ì	1,0	1,2	2	1	21	-													 -		+	
	Meter Temp	17 CC	22	7,5	1	- 10	77	0 0	į		25.	12	5/	36	9					_				_		<u> </u>	_	+	_	
	Stack Temp,	- 2	2 5	00/	00/	1	2 3		5 2	1/10	1	+	+	+	2		-		1				_		-	+	+	1	 	
Theoretical	Volume, (Vm) ft ³ ,	TOTAIL 1	10.4(2)	2.00	87.400	18 S	26. 264	77.24	070 010	2000	200	30.06	200	200	907.0	105.550													_	
<u> </u>	Volume, (Vm) ft³,per	point	3.154	8.977	2.649	0,07	1.877	1.611	2000	1.00	6	701		1	633		į													
Meter	Kate, Cubic Feet/	Ç E																	1						-	-	_			
	Square Root,	7	37.	758.	35	.632		-	•	200	2	.517		2	٥	3		-	1			_		-	+	1				
	Meter Volume (V _m) ft³,	Actual	16.415	25.67	82.415	85,060	87.078	Sn6 88	50.930	72.680	74. 580	043.95	7.50	2 8 50	10.00	163.365														
	Orifice Setting	(FA)	33	2.5	7.6	J	1.7	1.2	1.7	0	7.		-	2	1 - 1		_							!						
		(A D)	76.	,80	89	0h	.35	,35	77.	2	,34		350	3	22.													_		
		Time	715	515	<u>م</u> ک	17 19	2	12 19	80	3	5 5	6 30	M,47	16.55	5 - 4¢	42											<u> </u>			
	Port-	Point #.	8	8	9/		2/	S.	<i>h)</i>	15	و	(7	8	5	10	,														

IMPINGER	WEIGHT	SHEET

PLANT: Behr Iron a Meta!
INIT NO. NW Bog Louse
LOCATION: Gas Cooler Inlet
DATE: 10/0/15
TEST NO: (c)
METHOD: 5/29
WEIGHED/MEASURED BY: MEP
SIA-37

	FINAL WEIGHT	INITIAL WEIGHT	IMPINGER	IMPINGER
Circle One:	MLS / GRAMS	MLS/GRAMS	GAIN	CONTENTS
强制型数数	, distantina de la fi		*.05-100-0001000	
MPINGER 1	707.7	715.7		
Ţ.,			是非洲的地名	
IMPINGER 2	628,6	613.8	A S	
			建筑作品等	
IMPINGER 3	617.9	613.4		
IMPINGER 4	844.5	823.2		
以其如此的表现的	,在自己的 自己的原则	数 6人至1/m的提供。2009年	等的。2019年末7月至	
IMPINGER 5				
個學學是一	地震地震	学 上一个		
IMPINGER 6				
医大胆体性外侧		经 种种的特别	1. 一点 計畫數學的問題	以
IMPINGER 7				
			经外期 计 加层 前面影	
IMPINGER 8				

IMPINGERS	1954,2	1942.9	
	FINAL TOTAL	INITIAL TOTAL	TOTAL IMPINGER GAIN
SILICA			21.3
-	FINAL TOTAL	INITIAL TOTAL	TOTAL SILICA GAIN

Isokinetic Sampling Cover Sheet

MOK	Kou
Test Engineer:	Technician:

MOK	Kou
Fest Engineer:	est Technician:

M

	Project Number: Mys 4005 Plant Name: Below Teach Mock to to Diameter: 2.75 Downstream Diameters: 2.75 Port Diameter: 6."
Plant Information	Date: 15-6-15 Client Name: P.K. Assach, Zwe Length: — Width: or Upstream Diameters: >5 Port Length: S." Source Condition: Normal
	Test Location: N. B. L. O. 14 + St. Court Shape: Circularyor Rectangular Stue Area: N. 2.14 Court Type: N. 2.1

	- Tile.		voe: Hrissey	10/11/4 00/10 11/11/11	Filter Number/Weight: 8 /5 / 1 1/7 / 25	Thimble Number/Weight		leck: O oo oo (G) T	O.H. > Q /		
Meter and Probe Data	AH Value	Meter y value.	Ditat Coefficient: 84 Train Type:	9	Nozzle Diameter: . 230 Filter N		Probe Liner: (5 % 5)	. "Ha Post-Test Nozzle Leak Check:		(a ≤ "H2O Post-Test Pitot Leak Uneck.	
		Mater ID:		Pitot ID:	1 + 1 + 1 + 1 - 1 - 1 - 1 - 1 - 1 - 1 -		Drohe Length:	Floor Edigan:	Pre-lest Nozzle Leak Check:	Pre-Test Pitot Leak Check:	ייין מיין וייין וייין וייין אייין

	Min/Point: Sample Plane:(Horizontalyr Vertical	
Traverse Data	Points/Port: 12.0 N Total Test Time: 12.0	
	Ports Sampled: 2	

Stack Parameters	Static Pressure: -2.0 /Avg. 22,7 Determined by: Method 3 or (Method 3A O2%: / / Servomex Serial #: @14\pol/353 \ \subseteq Final Imp. Volume or Weight: 2\Dz.\lambda \ \subseteq \su
	ance Model and S/N: r Weight: 2072.5
	Barometric Pressure: CO ₂ %: // Imp and/or silica bala Initial Imp. Volume or Initial Silica Weight: _/

Comments:

I'M "B"

Post-Test Nozzle Verification:

3/2/2015

Rev. 1.0

1	Mak Test Tech: Ko	1 of 1		
10 - 6 - 15 Test Number:	45+717	M 2.9 Page Number:		
Date:	Att Tak Test Location: NW	+ Mch. Peulinest Method;	6-1	
er. 15 400 \$	RK Assa	Behr Icm + Me	Y857	
Project Number:	Client:	Plant:		

Kor	,
Test Tech:	1 of 1
MON	

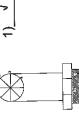
									- 1		-	_	_	т	_	_	_	_	_		Т	1	\top	\neg	, т	\neg	Т	Т	\neg	\neg	٦
	Impinger	Outlet	Temp. °F	\ \ \ \ \	2)0)	3	2,	2	\\ \(\) \(\)	9	93	000	100	9	ē	ī		2	23	3	25	26	25	25	7	2	χ) ν)	7.5			
		Tilt Tilt	Temp. °F	757	263	652	200	3) ا	300	250	27,00	36	1 (9	2 66	3	260	760	260	200	037	260	260	200	260	3	260			
		Drohe	Temp. °F	253	254	255	255	252	13	137	1972	26	2,0	700	9	()	2	57.	202	259	201	761	3.6	75	260	261	76-	261			
		Pump	vacuum, "Hg	S	e	9	ئ	٩	ال	\ \ \ !	1	\ -	- -	2 2			٠	ه	9	J	N	n	5	5	N	3	-	7			
	Meter	Temp	Outlet,	29	103	29	62	63	2,00	3	9.	5, 9,	5 \l	ر ج ا	S O	1	S	8	0	ری	67	5	20	200	2 9	63	2	8			
	,	Meter	lemp Inlet, °F	10)	2")	65	67	8	200	69	70	F	70		20		7	7	73	74	77	77	7	7	75	77	7	73	.		
		Stack	emp,	35	2	88	20	5	50	0	5	0C) (2	2			96	5	5	0	_	×	5	×	90	97	9	-		
	Theoretical Meter	Volume,	(Vm) #², total	Mit fight I was	S6.540	90.539	93.804	26916	101,455	105.218	108,857	117.3% C	2 .	119.043	122,312	125.407	Manual Manual	129,423	133,416	137,347	141,235	144.980	148,787	152,405	155.957	15.9.409	162,793	166,000	169,133		
× ×	Theoretical	Volume,	(V _m) ft³,per point		2,990	3,775	3.883	3.763		3.639	3.504	3,40,5	3,2609	3.263	3,095			3,981	3,957	3.868	3,745	7,807	8196	3,552	3,452	3,384	12/2	2,133			
	Meter	Cubic	Feet/ Min.	199	790	h5%.		- 1	757.	111	1.5	180	(Sa)	, 653	رواع		.803	797,	١ هر.	ctr.	149	196	n3	2/2	690	1676	6-	209			
		Square	Root, △P	236	020		١,	18.	.787	,754	321.	17c1	678	و	049		.830	F28.	87	800	17.	787	348	734	7	00/	(99)	279)	*	_	
	Motor	Volume	(V _m) ft³, Actual	07 54	12.18	90.37	93.54	37	101.29	80.30	108.169	W 22	5.62	19,12	122,39	125.607	175,607	179.70		127.55	1	12 % 21	75.86	15,75	100	4 Y	1020	16.67	1/9.24		
	<u>.</u>	Orifice	Setting (AH)		3	20.		- 27	ーイン	135	200	1.19	69	1.09	66.		h")"	1.62	50'	1,53	4	2)	24	17.5	127) [1.00	2 2	9		
F	_	•	á		2 5	13	3		ئہ و	7.7	5.3	205	، ط (ه	, 7	子		60	8	9	3		6.5	200	7	V	200	7	42	1		
	_		Time	2071	1 2 1	150	251	17,00	1306	0,71	17.15	1720	1225	CH CI	1724	1240	17.57	120	1207	100	200	10.0	422	222	100	1224	1247	25.5	1261	122	
			Port-		- 1	J 74	٦	- 4	, ,	-	. p/	6	ō	=	17	4) - (2	i ye	ាជា			S F	- 5	9 9	2	2 2				

PLANT: Ben T Iron & Metal
UNIT NO: NW Baghouse
LOCATION: Stack
DATE: 16 6 15
TEST NO:
METHOD: 5 29
WEIGHED/MEASURED BY:
BALANCE ID: 510-37

	FINAL WEIGHT		INITIAL WEIGHT		IMPINGER		IMPINGER
Circle One:	MLS / GRAMS	龗	MLS / GRAMS		GAIN	al and a	CONTENTS
					第一个		
MPINGER 1	725,5		73517				
				禁止性			
MPINGER 2	731.3		716.3				
MPINGER 3	645,3		640.5				
					建筑的	and the	
MPINGER 4	818.5		800,2				
三温二 底夜頭				Time.	到 5万层 州市		2000年4月
MPINGER 5						图	
THE PERSON	经基础包括	20	動為時間是談		用引起。直接的		
MPINGER 6				4			
对位是机多数	就是EMPLATE TO THE PARTY		海岛尼亚巴西部分		好起。群 海邊路		国际企业型的
MPINGER 7							
			克里斯 医	300 B	的对象的是		经验 证 100 年
MPINGER 8							

IMPINGERS	2102.1	2092.5	9.6
	FINAL TOTAL	INITIAL TOTAL	TOTAL IMPINGER GAIN
SILICA			18.3
	FINAL TOTAL	INITIAL TOTAL	TOTAL SILICA GAIN

		Project Number: M 15 4 005	Plant Name: Behr Inch + Met Rakhwal	or Diameter: 2, 75	Downstream Diameters: > 2	Port Diameter:	
Dlant Information	FIGHT III OHINGTON	Date: 10 - (n - 15	Client Name: RK Associates Inc.	Length: - Width: -	Diamete	Port Length: 8"	Source Condition: Norwell
		7	Nw Branchave nother Speck		046	Nienz	M29
		Run Number:	Test Location:	Duct Shane.	Flue Area:	Port Type:	Test Method:


							71.	<u>න</u>	Ç İ	771	
	X 8 7	0.00	And son			ser/weight:		0,00,0	\ •	2	
Data	.olo/\ □ v	An value.	Train Type:	Filter Number/Weight:		Thimble Number/Weight:		Post-Lest Nozzle Leak Check:	Ottot I and Obank	Post-lest Pitot Leak Cileck.	
Meter and Probe Data	000	7	78.	120)	(5/4°)	1		H	Post-Test	
Meter	2000	Meter Y value:	Pitot Coefficient:	Nozzle Diameter:	וייסבוק בומחוסים:	Probe Liner:	Ι.	FH. 14	K. S.	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1)
		<u>رة</u> (٢	\$ 0~1	1011	1) 142 (3)	3		Pro-Tost Nozzle Leak Check:		Leak Check:	
		Meter ID:	1 2 2	בוסובים.	Nozzle ID #	Drobo Longth	Probe Lengui.	Dro-Test No22	10011001	Pre-Test Pitot Leak Check:	

	Min/Point: 5 Sample Plane Honzontal or Vertical
rse Data	Min/Poin
Travel	Points/Port: I
	7,7
	Ports Sampled:Total Points:

Stack Parameters	Static Pressure: -2.0	S 02%; / / /Avg. 20, 1 Determined by: Method 3 of Method 3A	S(5-37 Servamex Serial #: 014+0(>(1393)	Imp. Volume or Weight: 1921.	Final Silica Weight: 8'53'8 Silica Weight Gain: 12.8	
	Rarometric Pressure: 29.40	CO. %. / / Avg. &	Imp and/or silica balance Model and S/N:	Initial Imp. Volume or Weight: 1911 Final	Initial Silica Weight:	I.m. "B"

Post-Test Nozzle Verification: 1 Comments:

3/2/2015

Rev. 1.0

502

ر ام

760 250

7

2

156,550

7.814

,640 יריט.

153.15 156.91

199

7.5

16.42 1647

ب

ブ

5

8 ္

1562 (23)

159.709

1652

Isokinetic Sampling Field Data Sheet

۱ ۱	4	ı			Imping
2 Toot Took	MOK lest feut. KO	5			_
er:		Page Number:			Meter
Test Number:	O.H.				etical
9 -01		m 29		8	Meter Theoretical Theoretical
Date:	Test Location:	Feet Method:	99.	×	Meter
	24 Assabitio Inc.	2	2.416	<u> </u>	-
Project Number:	Client:	Plant:			

Port-Point #.

0

5

9-

5

3

-

IMPINGE		

PLANT: Behr Iron & Metal
UNIT NO: NW Bag Nouse
LOCATION: Stack
DATE: 10/6/15
TEST NO: (B)
METHOD: 5/29
WEIGHED/MEASURED BY: MEP
BALANCE ID: 510 -37

	FINAL WEIGHT	INITIAL WEIGHT	IMPINGER	IMPINGER
Circle One:	MLS / GRAMS	MLS/GRAMS	GAIN	CONTENTS
IMPINGER 1	657.1	654.1		
MPINGER 2	649.4	640.3		
IMPINGER 3	618,1	616.6		
10000000000000000000000000000000000000				
IMPINGER 4	853.8	941.0		
	自由語言語表別是	一种种种种种种种种种种种种种种种种种种种种种种种种种种种种种种种种种种种种	医器門上沙科尼斯	的 是他是他们的社会。
IMPINGER 5				
経験権力を	的意识和欧州	地种 中国 中华 中华 中华 中华 中华 中华 中华 中华 中华 中华 中华 中华 中华		性的學生就是與他
IMPINGER 6				
	阿斯斯斯特氏学		Astronomy and	
IMPINGER 7				
	的知识,但是		建设加加多数	
IMPINGER 8				

IMPINGERS	1924,6	1911.0	13.6
•	FINAL TOTAL	INITIAL TOTAL	TOTAL IMPINGER GAIN
SILICA			12.8
-	FINAL TOTAL	INITIAL TOTAL	TOTAL SILICA GAIN

Isokinetic Sampling Cover Sheet Test Engineer: MDK-Test Technician: べっろ

Plant Information	2	NW Brahavie Outet State Client Name: K.F. HSSOCIATIS +X	(Circulator Rectangular Length: Width: or Diametel.		The state of the s	Name of the second		Meter and Probe Data	Meter Y Val	Nozzla Diameter 7.30	O See Thimble Number W.	Probe Liner: (21%)	la Lask Check: 0.00/ @ "Hg Post-Test Nozzle Leak Check: "A @ 1	/ 6 5 "H-O Post-Test Pitot Leak Check:			Traverse Data	
	Run Number:	Test Location:	Duct Shape:	Flip Area.	Dott Times	For Type.	l est Methoc		Motor D.		Nozzle IU #	Probe Lenath:	Dro Toet No		Pre-lest Pil			

Ports Sampled: 2. Total Points: 2시	Points/Port: Total Test Time: Stack	اد: المحدد Stack Parameters	Sample Plane: Horizontal or Vertical
Barometric Pressure: 29, 4 CO ₂ %: / / / Avg. O Imp and/or silica balance Model and S/N: / / / / / / / / / / / / / / / / / /	Static Pressure: 02%: Final Imp. Volume or Final Silica Weight:	Weight: 200	Static Pressure:

Post-Test Nozzle Verification: Rev. 1.0

3/2/2015

Comments:

~ _

0

٣ 10

DS-005 M5 Isokinetic Field Data Sheet

Rev. 2.0

Isokinetic Sampling Field Data Sheet

(v)	in Dk Test Tech:	/ Jo /		
Test Number:	Sk_Qperator:	Page Number:		
10 - G - 15 Test Number:	NW Bagburn ONLY St. LOperator:	M 29		
Date:	Test Location:	Test Method:	00	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
M154005	RK Associates Inc	Dehr Irus + Meh. Rackfind Test Method:	2.416	
Project Number:	Client:	Plant:	, 1	

Port-Point #.

1

7

ير ا	J	I		Impinger Outlet Well	Temp. °F	52	30	35	27	533	54	55	23	5	2	65	2		ر ک	2	7	<u>۲</u>	<u>ی</u>	45	45	47	7.7	45	Š	5		
Test Tech: Koス				Filter	Temp. °F	253	750	563	202	76-	260	258	255	202	263	500	25.5		852	197	260	260	240	253	260	122	701	2077	255	260		
Test T	و - ا			Probe	Temp. °F	252	258	261	787	258	261	260	261	250	2	260	760		257	157	259	192	192	192	259	261	26	097	260	7%		
Jan.				Pump	"Hg"	٦	٧	ν,	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	۲,	5	ر ا	7	h	5	د	7		√	5	Y	ト	6	7	N	V	V	S	7	2-		
	nber:			Meter Temp		70	20	70	20	7	71	7	11	75	75	75	22		11		7	7	7	7	1	-	_	7	Ē	70		
Operator:	Page Number:			Meter	Inlet, 'F	70	75	76	7	<u>5</u>	13	24	777	79	79	79	29		16	77	<u>ر</u>	79	75	7	7	77	1	7	وم	3,7		
Ket Sec				Stack	°F	46	93	26	7	16	4	91	91	91	9	9	90		29	89	5	89	91	93	94	26	98	6	6	ب		
NW Broken allet Sk. Derator.	m 29		Theoretical	Meter Volume,	total	Million .	63,937	(07,195	71,965	75.875	79.853	82831	81.181	91.447	95.047	78.614	860201	105,472		124.601	113,342	117, 322	121.302	125,191	128.90	132,717	136,356		43556	147.055	150,485	
1	•		× ≤ Theoretical	Meter Volume,	point	3.920	3.858	4.070	4,010	3.9-18	3913	3,950	3,666	3.600	3.567	3,464	3.394		2.980	3,420	3,9 86	3.980	3.889	3,795	3,731	3,633	3,600	3.600	3.499	3,430		
Test Location:	Test Method:	tyes	Meter	Rate, Cubic	<u> </u>	ァ	-	1814	. 802	795	7.95	190	.133	720	511.	7695	819;		091/	1984°	1960	0	177	,759	. 746	$\overline{}$.720	172 Y	, 699	,686		
r I		7	_	Square Root	₽	500%	L&L	·830	8/8	T18'	4 3	908	748	- XXL	82L	Lot.	,692		8	000	218.	218	5 P.L.	1774	191.	141	,734	734	,नाप	,700		
45 1.2	Metr Ruckford			Meter Volume	Actual	60.017	63.52	67,46	71.60	15.60	77851	03.69	27.61	91,35	95.10	98.66	102.19	105.585	105.585	109.65	QS 'Ell	09.111	121.65	125.41	129,25	132.98	136,72	1-40.68	143.92	147.59	150.603	
c Associates		2.416		Orifice	(AA)	1.55	57	1.67	291/	5.0	7	7.	1.35	1,30	1,28	5	١. ال		1,57	1.55	1,59	1,59	751	1.45	1,40	1,33	1,30	1,30	621	1,18		
고 보	ا الم	7			(A ∇)	أوط	62	.69	آق	00	99,	بوئ	2	75	7,	50	1 × 5		So	.و۲	ا (دو	الوره	ره	09,	.58	.55	15.	,54	1	١ ١ ٩		
, ient:	ant:				Time	1735	2년	1745	1750	1755	1 800	1805	1810	\$18	1820	182	1830	1835	150	1856	1901	1906	1161	<u>ه</u>	1251	1926	1931	1936	145	9461	1951	

1.1

-

*

=

2

5

IMPINGER WEIGHT SHEET

PLANT: Behr Iron & Metal
1)1) 0
UNIT NO: NW Baghouse
LOCATION: Stack
DATE: 10.6.15
TEST NO: 3 (B)
METHOD: 5/29
MER
WEIGHED/MEASURED BY: MEP
BALANCE ID: 5/0-37

	FINAL WEIGHT	INITIAL WEIGHT	IMPINGER	IMPINGER
Circle One:	MLS / GRAMS	MLS / GRAMS	GAIN	CONTENTS
IMPINGER 1	738.7	735.7		
IMPINGER 2	727.4	715.1		
IMPINGER 3	644.8	643,2		
IMPINGER 4	8243	809.7	UKĄCZNIII ISJONY	
IMPINGER 5				
IMPINGER 6				
IMPINGER 7				
IMPINGER 8				

MPINGER 8			
IMPINGERS	2110.9	2094.0	16.9 TOTAL IMPINGER GAIN
	FINAL TOTAL	INITIAL TOTAL	
SILICA	FINAL TOTAL	INITIAL TOTAL	14,6 TOTAL SILICA GAIN

Appendix G - Calibration Data

MOSTARDI PLATT

Procedures for Method 5 and Flow Calibration

Nozzles

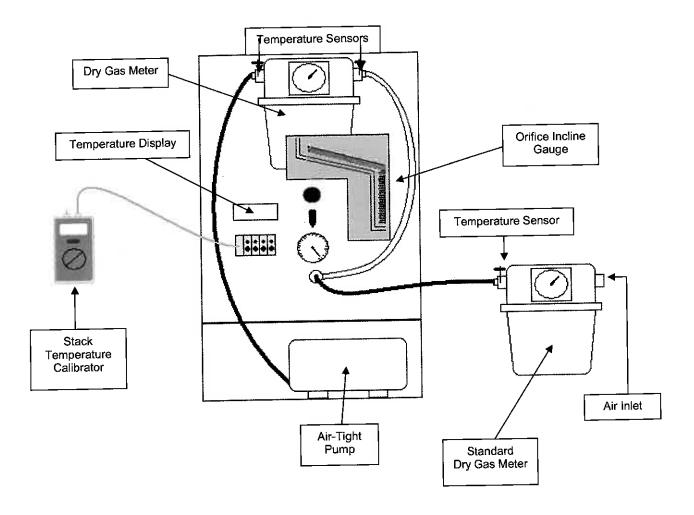
The nozzles are measured according to Method 5, Section 10.1

Dry Gas Meters

The test meters are calibrated according to Method 5, Section 10.3 and "Procedures for Calibrating and Using Dry Gas Volume Meters as Calibration Standards" by P.R. Westlin and R.T. Shigehara, March 10, 1978.

Analytical Balance

The accuracy of the analytical balance is checked with Class S, Stainless Steel Type 303 weights manufactured by F. Hopken and Son, Jersey City, New Jersey.


Temperature Sensing Devices

The potentiometer and thermocouples are calibrated utilizing a NBS traceable millivolt source.

Pitot Tubes

The pitot tubes utilized during this test program are manufactured according to the specification described and illustrated in the *Code of Federal Regulations*, Title 40, Part 60, Appendix A, Methods 1 and 2. The pitot tubes comply with the alignment specifications in Method 2, Section 10.1; and the pitot tube assemblies are in compliance with specifications in the same section.

Dry Gas Meter/Control Module Calibration Diagram

Dry Gas Meter Calibration Data

	Dry Gas Meter No. Standard Meter No. Standard Meter (Y)		CM33 16745468 1.0006			Date: Calibrated By: Barometric Pressure:	ure:	1 1 1	Septembe NK 29	September 28, 2015 NCC 29.29	
	Orifice Setting in H ₂ O	Standard Meter Gas Volume	Dry Gas Meter Gas Volume	Standard Meter Temp. F°	Dry Gas Meter Inlet Temp. F° tdi	Dry Gas Meter Outlet Temp. F° tdo	Dry Gas Meter Avg. Temp. F° td	Time	Time	>	Chg (H)
Run Number	Cng (rī)	\$	3								
Final		63.935	91.944	69	92	74					
Initial		58.933	86.806	89	73	72				6	100
Difference	1 0.20		5.138	69	75	73	74	19	30	0.983	1.728
Einal		69.653	97.680	69	22	75					
Initial		64.550	92.560	69	74	75					Ç I
euce	2 0.50		5.120	69	92	75	75	12	44	1.008	1./68
			103.433	69	2.2	75					
indi Initial		70.113	98.145	69	9/	75			,	4	1
9006	3 0.70		5.288	69	77	75	92	11	10	1.007	1./8/
		80.949	109.032	69	77	75					
Initial		75.755	103.812	69	9/	75					
Difference	4 0.90		5.220	69	7.7	75	92	6	30	1.006	1.708
Einal			114.743	69	77	74					
Initial		81.442	109.527	69	9/	75				,	
Difference	5 1.20	5.196	5.216	69	77	75	9/	8	12	1.006	1.697
Final		58.648	86.625	89	73	72					
Initial		53.091	81.102	89	71	70			í		7
Difference	6 2.00	5.557	5.523	89	72	71	72	٥	6C	1.000	1.000

Stack Temperature Sensor Calibration

Meter Box #:

CM33

Name:

NCC

Ambient Temperature:

74

Date:

September 28, 2015

Calibrator Model #:

CL23A

Serial #:

T-249465

Date Of Certification: December 26, 2014

Primary Standards Directly Traceable National Institute of Standards and Technology (NIST)

Reference Source Temperature (° F)	Test Thermometer Temperature (° F)	Temperature Difference %
0	-3	0.7
250	246	0.6
600	595	0.5
1200	1198	0.1

Dry Gas Meter Calibration Data

Dry Gas Meter No. CM33
Standard Meter No. 4319699
Standard Meter (Y) 1.0053

October 29, 2015	KAG	28.76	
October 29, 2015	KAG	28.76	

Calibrated By: Barometric Pressure:

setting in H $_2$ O Gase Volume Temp. F° Inter Temp. F° Inter Temp. F° Aug. Temp. F° Inter Temp. F° Inter Temp. F° Aug. Temp. F° Itime Time Time 1 Chg (H) 88.282 11.562 56 64 61 61 61 88.287 88.287 11.562 55 57 57 56 57 57 58 18 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 66 64 62 64 62 64 62		Orifice	Standard Meter	Dry Gas Meter Standard Meter Dry Gas Meter Dry Gas Meter	Standard Meter	Dry Gas Meter	Dry Gas Meter	Dry Gas Meter	_			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Setting in H.O.		Gas Volume	Temp. F°	Inlet Temp. F°	Outlet Temp. F°	Avg. Temp. F°	Time	Time		
SB 282	,	Settling III 1120	W	ρΛ	tr	tơi	tdo		Min	Sec	>	Chg (H)
Fence I 0 0.0 6 5.04 6 5.38 55 67 67 67 67 67 67 67 67 67 67 67 67 67	Kun Number	(1) BIO										
ence 1 0.20 6.538 55 57 57 57 57 ence 1 0.20 5.024 56 64 62 59 78 78 78 ence 2 0.50 5.024 5.024 56 64 62 72 72 72 ence 2 0.50 5.021 5.024 5.66 64 62 62 72 72 72 ence 2 0.50 5.021 5.035 56 64 62 62 72 <td>i</td> <td></td> <td>88 282</td> <td>11.562</td> <td>99</td> <td></td> <td>19</td> <td></td> <td></td> <td>_</td> <td></td> <td></td>	i		88 282	11.562	99		19			_		
ence 1 0.20 5.075 5.024 56 69 59 59 18 24 ence 1 0.20 5.017 16.712 56 64 62 59 18 24 ence 2 0.50 5.021 5.035 56 61 61 62 12 2 ence 2 0.50 5.021 5.035 56 64 62 63 62 12 2 ence 3 0.50 5.021 5.035 56 64 63 62 12 2 2 ence 3 0.70 5.137 5.140 56 65 63 64 10 32 rence 4 0.90 5.984 6.033 57 66 63 63 64 10 26 fence 4 0.90 5.984 6.033 57 66 63 63 64 10 <td< td=""><td>rinal</td><td></td><td>83.267</td><td>6.538</td><td>55</td><td>25</td><td>25</td><td></td><td></td><td></td><td></td><td>ì</td></td<>	rinal		83.267	6.538	55	25	25					ì
ence 2 0.50 6.71 6.71 6.7 6.6 6.4 6.2 72	Difference 1	r1 0.20		5.024	99				18	24	1.010	1.511
ence 2 0.50 6.021 1.677 56 61 61 61 61 62 12	Einal			16.712	99							
ence 2 0.50 5.021 5.035 56 63 62 62 12 12 ence 3 0.70 5.021 5.032 56 64 65 63 62 10 ence 3 0.70 5.137 5.140 56 64 63 64 10 ence 3 0.70 5.137 5.140 56 65 63 64 10 ence 4 0.70 5.137 5.140 56 65 63 64 10 ence 4 0.90 5.984 6.003 57 66 63 64 10 fence 4 0.90 5.984 6.003 57 66 63 64 10 fence 5 5.248 5.247 57 66 63 63 64 10 fence 6 5.229 5.247 5.24 56 56 56	initial interest		88.396	11.677	99				٠			
ence 3 0.70 5.137 22.022 56 65 63 63 64 10 ence 3 0.70 5.137 5.140 56 64 63 64 10 ence 3 0.70 5.137 5.140 56 65 63 64 10 ence 4 0.90 5.984 22.234 56 65 63 64 10 ence 4 0.90 5.984 6.003 57 66 63 64 10 rence 5 1.20 5.284 6.003 57 66 63 64 10 rence 5 1.20 5.223 2.247 57 66 63 64 10 rence 5 1.20 5.223 5.247 57 66 63 63 64 10 rence 5 5 5 5 5 5 6 <t< td=""><td>ace</td><td></td><td></td><td>5.035</td><td>99</td><td></td><td></td><td></td><td>12</td><td>2</td><td>1.013</td><td>1.605</td></t<>	ace			5.035	99				12	2	1.013	1.605
ence 3 0.70 5.137 16.882 56 64 63 64 63 64 10 ence 3 0.70 5.137 5.140 56 65 63 64 10 ence 4 0.90 5.984 22.231 56 65 63 64 10 ence 4 0.90 5.984 6.003 57 66 63 64 10 rence 5 1.20 5.153 28.482 57 66 63 63 86 8 rence 5 1.20 5.229 5.247 57 66 63 65 8 rence 5 1.20 5.229 5.247 57 66 63 65 8 8 rence 5 1.20 5.229 5.247 57 66 63 66 8 8 8 rence 5 1.20 5.247	2010				99							
ence 3 0.70 5.137 5.140 56 65 63 64 10 ence 4 0.90 5.984 22.231 56 65 63 64 10 ence 4 0.90 5.984 6.003 57 66 63 64 10 ence 4 0.90 5.984 6.003 57 66 63 64 10 ence 5 10.382 33.729 57 66 63 65 8 rence 5 1.20 5.153 28.482 57 66 63 65 8 rence 5 1.20 5.229 5.247 57 66 63 65 8 rence 5 1.20 5.229 5.247 55 56 56 8 rence 6 5 56 56 56 6 8 rence 6 5 <td< td=""><td>iniai Initial</td><td></td><td>93.576</td><td></td><td>99</td><td>64</td><td>63</td><td></td><td></td><td></td><td></td><td></td></td<>	iniai Initial		93.576		99	64	63					
ence 4 0.90 5.98 924 22.231 56 65 63 64 10 ence 4 0.90 5.984 6.003 57 66 63 64 10 rence 4 0.90 5.984 6.003 57 66 63 64 10 rence 5 1.20 5.153 28.482 57 66 63 63 8 rence 5 1.20 5.247 57 66 63 65 8 rence 5 1.20 5.247 57 66 63 65 8 rence 5 1.20 5.247 57 66 63 65 8 rence 5 5.247 57 56 56 56 66 63 rence 6 6 63 66 63 66 8 65 8 rence 7 6 6				5.140	99				10	32	1.018	1.640
ence 4 0.90 5.984 22.231 56 65 63 64 10 ence 4 0.90 5.984 6.003 57 66 63 63 7 ence 5 1.20 5.153 28.482 57 66 63 65 8 ence 5 1.20 5.229 5.247 57 66 63 65 8 ence 5 1.20 5.229 5.247 55 56 56 56 8 ence 5 1.20 5.229 5.247 55 56 56 56 8 ence 5 1.20 5.00 5.086 5.030 55 56 56 66 66 8	2010							-				
ence 4 0.90 5.984 6.003 57 66 63 64 10 ence 5 10.382 33.729 57 66 63 63 64 10 ence 5 1.20 5.153 28.482 57 66 63 65 8 ence 5 1.20 5.229 5.247 57 66 63 65 8 ARROST 1.384 55 56 56 56 6 6 6 ARROST 1.384 53 55 55 56 6 6 6 6 6 6 6 8 </td <td>Luitio</td> <td></td> <td>598.924</td> <td></td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>,</td>	Luitio		598.924		 							,
ence 5 1.20 5.729 5.247 57 66 63 63 8	ence	_								26	1.015	1.526
Fence 5 1.20 5.153 28.482 57 66 63 63 85 85 87 80 80 80 80 80 80 80 80 80 80 80 80 80	Einal		10.382	33.								
ence 5 1.20 5.229 5.247 57 66 63 65 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	in itial		5.153		29	99						
83.143 6.414 55 56 56 56 56 6 6 56 6 56 6 56 7 6 7 7 7 8 7 8 7 8 8 7 8 8 9 8 9 8 9 8 9 9 8 9 9 9 9	ence	_			22					27	1.013	1.750
78.057 1.384 55 55 55 56 6 6 50 50 50 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 6 7 6 7 6 7 6 7 7 7 7 7 7 7 8 7 8 7 8 9								<u>س</u> ا				
6 2.00 5.086 5.030 55 56 6	toitiot		78.057	1.384	99							1
Social	ence	6 2.00								15	1.012	1./03

1.622

1.014

Average

Stack Temperature Sensor Calibration

Meter Box #:

CM33

Name:

KAG

Ambient Temperature:

59

Date:

October 29, 2015

Calibrator Model #:

CL23A

Serial #:

T-249465

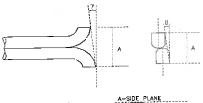
Date Of Certification : December 26, 2014

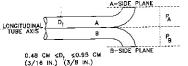
Primary Standards Directly Traceable National Institute of Standards and Technology (NIST)

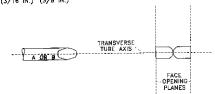
Reference Source Temperature (° F)	Test Thermometer Temperature (° F)	Temperature Difference %
0	-3	0.7
250	246	0.6
600	595	0.5
1200	1198	0.1

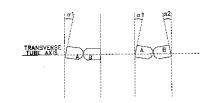
(Ref. Temp., ${}^{\circ}F + 460$) - (Test Therm. Temp., ${}^{\circ}F + 460$) * 100 <= 1.5 % Ref. Temp., °F + 460

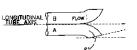
S TYPE PITOT TUBE INSPECTION WORKSHEET

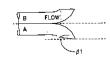

Pitot Tube Nc 256

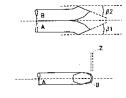

8/28/2015 Date:


Inspectors Name: PMR1


Type of Probe: (circle one) M2 M5 M17


Probe Length: 3 ft.





Pitot tube assembly level?

Pitot tube openings damaged?

$$a_1 = 0.5^{\circ} (<10^{\circ}),$$

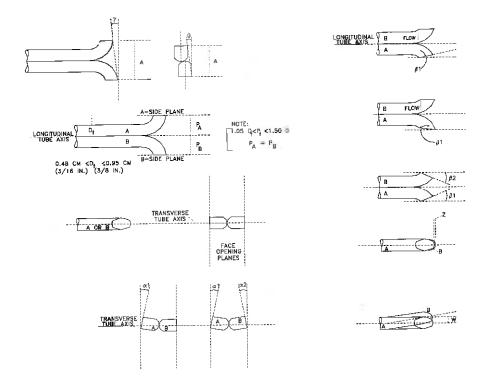
$$a_2 = 1 ^{\circ} (<10^{\circ})$$

$$z = A \sin g = \frac{0.017}{(in.)}; (<0.125 in.)$$

$$b_1 = 0.5 \, ^{\circ} (<5^{\circ})$$

$$w = A \sin q = \frac{0.008}{(in.)}; (<0.03125 in.)$$

$$P_{A} = 0.470 \text{ (in.)}, P_{B} =$$


Calibration required?

_____ yes ___x __no

S TYPE PITOT TUBE INSPECTION WORKSHEET

Date: ______10/9/2015 Inspectors Name: DJK____ Pitot Tube Nc _256 ___

Probe Length: 3 ft. Type of Probe: (circle one) M2 M5 M17

Pitot tube assembly level? x yes

_____yes (explain below) Pitot tube openings damaged?

$$a_1 = 2.5^{\circ} (<10^{\circ}), \qquad a_2 = 3^{\circ} (<10^{\circ})$$

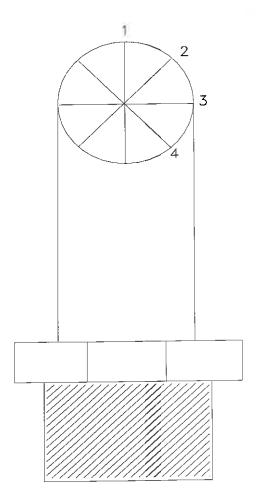
$$a_1 = 2.5$$
 ° (<10°), $a_2 = 3$ ° (<10°)
 $b_1 = 1$ ° (<5°), $b_2 = 0.5$ ° (<5°)

$$y = 20^{\circ}, \theta = 1.5^{\circ}, A = 0.946$$
 (in.)

$$z = A \sin g = \frac{0.033}{(in.)}; (<0.125 in.)$$

$$w = A \sin q = \frac{0.025}{(in.)}$$
; (<0.03125 in.)

_____ yes ___x___no Calibration required?


Nozzle Calibration

Date: 3/2/2015

Nozzle ID No.: 268

Analyst: BPT BPT

Material/Type: Glass

 0.310
 1

 0.311
 2

 0.310
 3

 0.309
 4

Valid Data

Dry Gas Meter Calibration Data

Dry Gas Meter No. CM26
Standard Meter No. 1675468
Standard Meter (Y) 1.0056

September 18, 2015 JHK 29.12

> Calibrated By: Barometric Pressure:

	Orifice	Standard Meter	Dry Gas Meter	Standard Meter	Dry Gas Meter	Dry Gas Meter					
	Setting in H,O	Gas Volume		Temp. F°		Outlet Temp. F°	Avg. Temp. F°	Time	Time	;	200
Run Number	Chg (H)	V	ρΛ	tr	tơi	tdo	td	Min	Sec	<u> </u>	Cng (H)
ioni ioni											
ino.		20.960	67.675	92	92	73					
rifial		45.770	62.390	22	92	73			,	L	100
asua	1 0.20	5.190	5.285	92	26	73	75	20		C86.0	1.724
		45.636	62.250	22	77	73					
		40.410	56.937	74	75	72			i	- 1	L
ence	2 0.50		5.313	75	9/	73	74	12	30	0.987	7,655
١		40.074	56.608	74	76	73					
tottial		34.230	50.690	75	75	73			,	0	4 707
9000	31 0.70		5.918	22	92	73	74	12	0	0.991	1./0/
2000			50.257	74	9/	72					
r III di		27.927	Ĺ	73	22	72					
Difference	4 0.90			74	9/	72	74	10	30	0.994	1.665
Final			43.775	23	75	72	- 1				
initial in the second		21.745	38.105		73	71				1	1
Difference	5 1.20		5.6	23	74	72	73	6	0	0.996	1.766
		57.954	74.758	9/	5 79	73	<u></u>				
l'iliai		51.326	68.050	92	9/	73				-	
ence	6 2.00		6.708	9/	87 78	73	75	8	0	0.987	1.692
	1										

1.702

0.990

Stack Temperature Sensor Calibration

Meter Box #:

CM26

Name:

JHK

Ambient Temperature:

78.1 °F

Date:

September 18, 2015

Calibrator Model #:

CL23A

Serial #:

T-249465

Date Of Certification : December 26, 2014

Primary Standards Directly Traceable National Institute of Standards and Technology (NIST)

Reference Source Temperature (° F)	Test Thermometer Temperature (° F)	Temperature Difference %
0	-1	0.2
250	248	0.3
600	598	0.2
1200	1199	0.1

(Ref. Temp.,
$${}^{\circ}F + 460$$
) - (Test Therm. Temp., ${}^{\circ}F + 460$) * ${}_{100} <= 1.5 \%$
Ref. Temp., ${}^{\circ}F + 460$

Dry Gas Meter Calibration Data

October 12, 2015 ALD

ı	1	I
Date:	Calibrated By:	Barometric Pressure:
CM26	4319699	1.0053
Dry Gas Meter No.	Standard Meter No.	Standard Meter (Y)

	Standard Meter (Y)	, , (Y)	1,0053		-	Barometric Pressure:	ure:	1 1	28	28.88	Đ
	Orifice	Standard Meter	Dry Gas Meter	St	Dry Gas Meter	Dry Gas Meter	Dry Gas Meter	- GE	Time	 	
Run Number	Setting in H ₂ O Chg (H)	Gas Volume vr	Gas Volume vd	Temp. F°	Inlet Temp. F* tdi	Inlet Temp. F" Outlet Temp. F Avg. Temp. F tdi tdi	Avg. remp. r	Min	Sec	>	Chg (H)
Cinol		785.204	721.010	99	89	29				•	
		779.376	715.106	99	29	99		-		L	4 766
Initial	1 0 20		5.904	99	89	67	29	22	54	0.895	1.700
Unrerence				99	02	68					
Final		785.423	<u> </u>	99	89	29			ļ	0	7000
Initial	2 0.50		5.215	99	69	89	89	12	45	0.982	7.000
Linol			732.190	(29	7.1	69					
indi Initia		790.751	726.603	29	70			7	000	7000	1 779
Difference	3 0.70		5.587	29	71	69	0/		30	166.0	21411
Einol		802.878	738.889	29 6	71	69					
Initial		796.475	732.417	29				,	tr tr	7000	1 784
Difference	4 0.90		6.472	29			0/		S	0.637	
Linol		808,174	744.244	4 67	72						
בוומ		390 000	730 078	29	71	69					

1.786	
0.994	
Average	

1.796

0.997

16

8

2

69

67 67

99

1.793

0.993

28

9

99

65 65

66 66 67

65 65 65

714.924 709.714 5.210

779.189

803.065 5.109

1.20

5

Difference

5.165

2.00

9

Difference

774.024

5.166

Stack Temperature Sensor Calibration

Meter Box #:

CM26

Name:

ALD

Ambient Temperature:

68

Date:

October 12, 2015

Calibrator Model #:

CL23A

Serial #:

T-249465

Date Of Certification: December 26, 2014

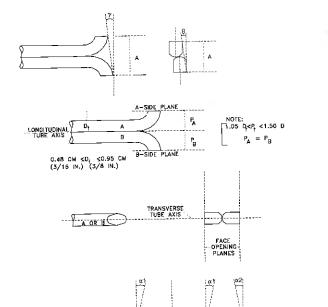
Primary Standards Directly Traceable National Institute of Standards and Technology (NIST)

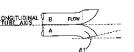
Reference Source Temperature (° F)	Test Thermometer Temperature (° F)	Temperature Difference %
0	-2	0.4
250	247	0.4
600	597	0.3
1200	1199	0.1

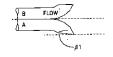
(Ref. Temp.,
$${}^{\circ}F + 460$$
) - (Test Therm. Temp., ${}^{\circ}F + 460$) * ${}_{100} <= 1.5 \%$
Ref. Temp., ${}^{\circ}F + 460$

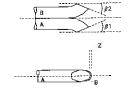
S TYPE PITOT TUBE INSPECTION WORKSHEET

Pitot Tube No: ______170___


4/24/2015 Date:


Inspector's Name: ____JCS1___


Type of Probe: (circle one)


M2 M5 M17

Probe Length: ___5_ ft.

Pitot tube assembly level?

Pitot tube openings damaged?

0 ° (<10°),
$$a_2 = 1.5$$
 ° (<10°)

$$z = A \sin g = 0.020$$
 (in.); (<0.125 in.)

$$b_1 = 2^{\circ} (<5^{\circ})$$

$$w = A \sin q = \frac{0.030}{0.030}$$
 (in.); (<0.03125 in.)

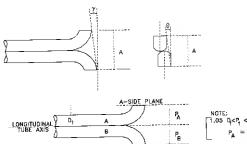
$$P_A = 0.565$$
 (in.), $P_B = 0.565$ (in.), $D_t = 0.375$ (in.)

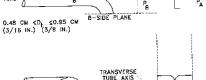
Calibration required?

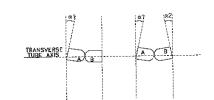
_____yes ___x__no

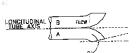
S TYPE PITOT TUBE INSPECTION WORKSHEET

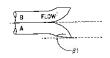
Pitot Tube No: _____170

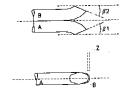

10/9/2015 Date:


Inspector's Name: DJK


Type of Probe: (circle one)


M2 M5 M17


Probe Length: __5_ft.



Pitot tube assembly level?

__x _yes

Pitot tube openings damaged?

_yes (explain below)

1.126 (in.)

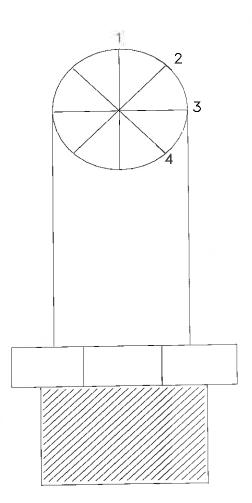
$$a_1 = 1.5^{\circ} (<10^{\circ})$$

$$b_2 = 0.5$$
 ° (<5°)

$$P_A = 0.563$$
 (in.), $P_B = 0.563$ (in.), $D_t =$

Calibration required?

___ yes ___ x ___no


Nozzle Calibration

Date: 2/23/2015

Nozzle ID No.: 7T-8

Analyst: KJC

Material/Type: Teflon Coated

Dry Gas Meter Calibration Data

CM 15 16745468 1.0006

Standard Meter No. Standard Meter (Y) Dry Gas Meter No.

Barometric Pressure: Calibrated By:

September 25, 2015 29.50 ALD

Setting in Fun Number Chg (#	Gas	ne Gas		c i		-		Time	Ì		
un Number Chg (Frence 1		\dashv	Gas Volume	Temp. F	Inlet Temp. F	Outlet Temp. F"	Avg. Temp. F°	2	lime		:
ence 1 ence 2			707	fr	tơi	tdo	tq	Min	Sec	>	Chg (H)
ence 1											
rence 1		180	251.328	69	72	71					
ence 1		535	246.585	69	7.1	20			-	(,
ence 2	000	4.645	4.743	69	72	71	71	16	56	0.983	1.423
ence 2	927.	927.673	256.935	69	74	71				•	
ence 2	922.633	633	251.789	69	72	71			•	0	7
	0.50	5.040	5.146	69	73	7.1	72	11	42	0.984	1.529
Lina,	933	933.315	262.662	02	75	72					
Initial	928.050	050	257.303	0/	73	72				!	
3	0.70	5.265	5.359	02	74	72	73	10	15	0.987	1.508
\ \ '		939.211	268.649	02	9/	73					
	933	933.915	263.266	0.2	74	72					. (
4	0.90	5.296	5.383	20	75	5 73	74	80	52	0.986	1.432
Final	944	944.747	274.256	0.2	92	73	- I		_		
i indi	939.	939.630	269.055	02	75	73				,	,
5	1.20 5.	5.117	5.201	02	92	3 73	74	^	28	0.989	1.449
	917	917.166	246.215	89	71	69	<u>~</u> 1				
Initial	911.	911.558	240.576	89	70	69				6	,
9 900	2.00	5.608	5.639	89	71	69	9 70	9	38	0.993	1.588

1.488

0.988

Average

Stack Temperature Sensor Calibration

Meter Box #:

CM 15

Name:

ALD

Ambient Temperature:

74

Date:

September 25, 2015

Calibrator Model #:

CL23A

Serial #:

T-249465

Date Of Certification: December 26, 2014

Primary Standards Directly Traceable National Institute of Standards and Technology (NIST)

Reference Source Temperature (° F)	Test Thermometer Temperature (° F)	Temperature Difference %
0	-4	0.9
250	245	0.7
600	595	0.5
1200	1198	0.1

(Ref. Temp.,
$${}^{\circ}F + 460$$
) - (Test Therm. Temp., ${}^{\circ}F + 460$) * ${}_{100} <= 1.5 \%$
Ref. Temp., ${}^{\circ}F + 460$

Dry Gas Meter Calibration Data

Dry Gas Meter No. CM15
Standard Meter No. 4319699
Standard Meter (Y) 1.0053

115 9699 063

Calibrated By: Barometric Pressure:

October 26, 2015 EWK 29.59

	Orifice	Standard Meter	Standard Meter Dry Gas Meter	Standard Meter		Dry Gas Meter Dry Gas Meter Dry Gas Meter	Dry Gas Meter				
	Setting in H , O	_	Gas Volume	Temp. F°		Inlet Temp. F° Outlet Temp. F°	Avg.	Time	Time		(L)
Run Number	Chg (H)		ρΛ	tr	tdi	tdo	td	Min	Sec	<u> </u>	(ri) Sun
		55 722	31.392	99	58	29					
Final		50 515	26.050	55	25	99					
Difference	11 0.20		5.342	99	28	22	22	18	58	0.982	1.453
Cingletica			37.769	29	69	59		-			
Till Gi		55.823		99	99	25				0	
Difference	2 0.50		6.275	22	59	58	58	14	10	0.987	1.45/
		67.391	43.291	29	62	59	-				
l mai		62.080	37.883	25	59	59				0	47.4
Difference	3 0.70		5.408	25	61	59	09	10	25	0.997	7.4/0
Cincle Cincle			53.999	25	64	09					
rillal		67.532	43.42	25	19	59			!	0	
Difference	4 0.90			29	. 63	09	61	18	18	0.880	7.535
Line)			61.416	95	99	61	·				
ייייין		78.015		25	62	09					
Initial Difference	5 1.20		_	99	9 64	61	62	11	29	0.991	1.695
Eins.		50.402	25.932	99	58	999	<u></u>]				
in in control		45.316		55	26	56		_		(700
Difference	6 2.00		5.142	55	5 57	, 26	57	9	13	0.992	7.034
Dilleterice											

Stack Temperature Sensor Calibration

Meter Box #:

CM15

Name:

EWK

Ambient Temperature:

59

Date:

October 26, 2015

Calibrator Model #:

CL23A

Serial #:

T-249465

Date Of Certification: December 26, 2014

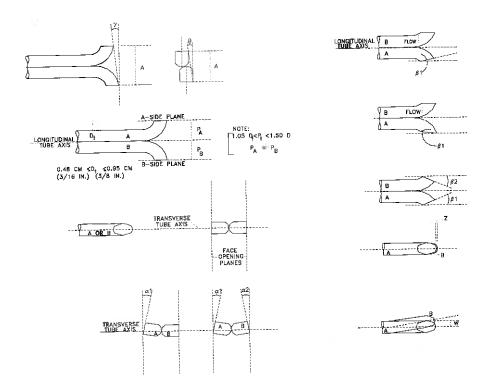
Primary Standards Directly Traceable National Institute of Standards and Technology (NIST)

Reference Source Temperature (° F)	Test Thermometer Temperature (° F)	Temperature Difference %
0	-3	0.7
250	246	0.6
600	596	0.4
1200	1199	0.1

(Ref. Temp.,
$${}^{\circ}F + 460$$
) - (Test Therm. Temp., ${}^{\circ}F + 460$) * 100 <= 1.5 % Ref. Temp., ${}^{\circ}F + 460$

S TYPE PITOT TUBE INSPECTION WORKSHEET

Pitot Tube No: _____170


4/24/2015 Date:

Inspector's Name: ____JCS1___

Type of Probe: (circle one)

M2 **M**5 M17

Probe Length: 4 ft.

Pitot tube assembly level?

Pitot tube openings damaged?

$$a_1 = 0$$
 ° (<10°)

0_° (<10°),
$$a_2 = ___1.5_{}^{\circ}$$
 (<10°)

$$z = A \sin g = \frac{0.020 \text{ (in.); (<0.125 in.)}}{2.000 \text{ (in.); (<0.125 in.)}}$$

$$h_{r} = 2^{\circ} (<5^{\circ})$$

$$b_2 = 1 \circ (<5^\circ)$$

$$w = A \sin q = \frac{0.030}{(in.)}; (<0.03125 in.)$$

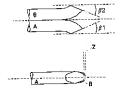
$$P_A = 0.565$$
 (in.), $P_B = 0.565$ (in.), $D_t = 0.375$ (in.)

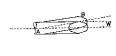
Calibration required?

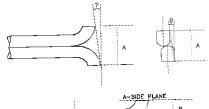
___yes ___x__no

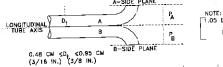
S TYPE PITOT TUBE INSPECTION WORKSHEET

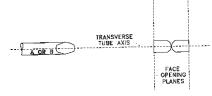
Pitot Tube No: ______ <u>170</u> __

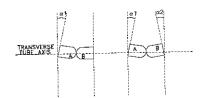

Date: 10/9/2015


Inspector's Name: ____DJK


Type of Probe: (circle one)


M2 M5 M17


Probe Length: 4 ft.



Pitot tube assembly level?

<u>x</u>yes ____no

Pitot tube openings damaged?

__yes (explain below)

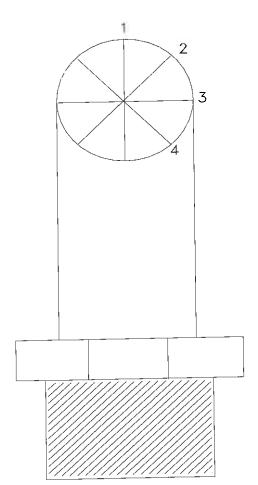
 $z = A \sin g = \frac{0.020}{(in.)}$ (<0.125 in.)

 $w = A \sin q = \frac{0.029}{(in.)}; (<0.03125 in.)$

1.5 °,A = <u>1.126</u> (in.)

 $P_A = 0.563$ (in.), $P_B = 0.563$ (in.), $D_t = 0.375$ (in.)

Calibration required? _____yes ___x___no


Nozzle Calibration

Date: 9/3/2015

Nozzle ID No.: 351

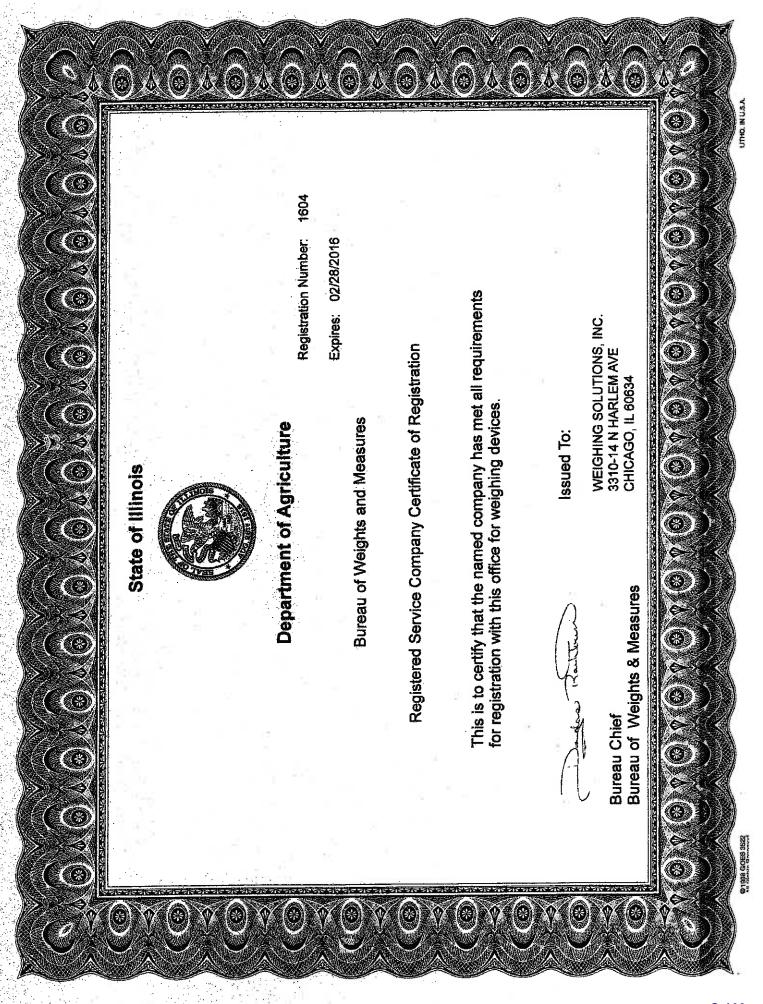
Analyst: ECS1

Material/Type: Glass

0.230	1
0.230	2
0.230	3
0.230	4

 <u>Average</u>	
0.230	

Rev. 0.0


9/13/2013

WEIGHING SOLUTIONS INC.

SALES-SERVICE-RENTALS 3310-14 N. HARLEM AVENUE CHICAGO, IL 60634

PHONE 773-836-2800 FAX 773-836-2891

	CALIBRATION REPORT	
Company Name Mas TAR Si Pl	477	Model # E 06/8
Date OCTOBER 14, 2		Serial/ID#60451/2/05/238
Location LAB		Manufacturer Otlaus Tolerance + 0.05 %
Weight Set # E 559		Tolerance
Weight Set #		
Capacity 62 5	Before Cal::	After Cal.:
Readability		는 하시겠습니다. 12 시간 : 1 시간
Weight # 1	0,00019	0.000/9
Weight #2	1,60009	1.0000 9
Weight #3	10.00009	10,0060 5
Weight #4209	20,00029	20. 0000 5
Weight # 5	50.00059	50.00009
5		
Acce		
Linearity		
Cornerload		
Repeatability		
Hysteresis		
Comments Cleaned and adjusted	d calibration to N.I.S.T. specification	3
	$-\lambda$) CE OF ILLUS
	Algan Mil	STATE OF ILLINOUS
	Technician	WEIGHING SOLUTIONS
10	673	
*	State Of IL Registration	NO. 1604 ST

				Ambient	Relative	Barometric	Calibration	;	Calibration	;	Calibration	
Pre/Post	Date	Time	Analyst	Temperature degrees F	Humidity	Pressure inches Hg	Standard 50.0000g	% Error	Standard 5.0000g	% Error	Standard 0.5000g	% Error
Pre	10/5/2015	8:00 AM	JLS	69	34.0	29.50	49.9997 g	0.00	4.9999 g	0.00	0.5001g	-0.02
Post	10/5/2015	3:30 PM	JLS	72	33.0	29.50	49.9997 g	0.00	5.0000 g	0.00	0.5000 g	0.00
Pre	10/6/2015	7:30 AM	STC	69	36.0	29.47	49.9998 g	00.0	5.0000 g	0.00	0.5003 g	-0.06
Post	10/6/2015	3:00 PM	STF	73	33.0	29.50	49.9995 g	00.0	5.0000 g	0.00	0.5000 g	0.00
Pre	10/7/2015											
Post	10/7/2015								¥ 8			
Pre	10/8/2015											
Post	10/8/2015											
Pre	10/9/2015											
Post	10/9/2015											THE PERSON
								33				
Pre	10/12/2015	7:00 AM	JMG	70	28.0	29.08	49.9996 g	0.00	5.0000 g	0.00	0.5000 g	00:00
Post	10/12/2015	3:00 PM	JMG	70	28.0	29.00	49.9995 g	0.00	5.0000 g	0.00	0.5000 g	0.00
Pre	10/13/2015	8:00 AM	JMG	02	25.0	29.00	49.9998 g	0.00	5.0000 g	0.00	0.5000 g	0.00
Post	10/13/2015	3:00 PM	JMG	0.2	25.0	29.00	49.9998 g	0.00	5.0000 g	0.00	0.5000 g	0.00
Pre	10/14/2015	8:00 AM	JMG	29	26.0	29.26	49.9998 g	0.00	5.0000 g	0.00	0.5001 g	-0.02
Post	10/14/2015	2:30 PM	JLS		24.0	29.35	49.9993 g	0.00	4.9999 g	0.00	0.5003 g	-0.06
Pre	10/15/2015	7:00 AM	JMG	69	25.0	29.32	49.9998 g	0.00	4.9999 g	0.00	0.5001 g	-0.02
Post	10/15/2015	1:30 PM	JMG	69	25.0	29.32	49.9998 g	0.00	4.9999 g	0.00	0.5001 g	-0.02
Pre	10/16/2015	8:00 AM	JLS	99	24.0	29.53	49.9994 g	0.00	5.0000 g	0.00	0.5004 g	-0.08
Post	10/16/2015	2:30 PM	3LS	89	24.0	29.62	49.9991 g	0.00	5.0001 g	0.00	0.5000 g	0.00
		:										
Pre	10/19/2015											
Post	10/19/2015						9 97				1.	
Pre	10/20/2015	8:00 AM	JMG	70	23.0	29.41	50.0001 g	0.00	5.0000 g	0.00	0.5002 g	-0.04
Post	10/20/2015	9:00 AM	JMG	20	23.0	29.41	50.0001 g	0.00	5.0000 g	0.00	0.5002 g	-0.04
Pre	10/21/2015	9:00 AM	JMG	69	26.0	29.44	49.9999 g	0.00	5.0002 g	0.00	0,5002.9	-0.04
Post	10/21/2015	10:00 AM	JMG	20	25.0	29.44	49.9999 g	0.00	5.0002 g	0.00	0.5002 g	-0.04
Pre	10/22/2015	2:00 PM	JMG	89	24.0	29.50	49.9999 g	0.00	5.0001 g	00:00	0.5002 g	0.0
Post	10/22/2015	2:15 PM	JMG	89	24.0	29.50	49.9999 g	0.00	5.0001 g	0.00	0.5002 g	-0.04
Pre	10/23/2015	8:00 AM	JMG	68	27.0	29.56	49.9999 g	0.00	5.0001 g	0.00	0.5000 g	00:0
Post	10/23/2015	3:00 PM	JMG	68	28.0	29.56	49.9999 g	0.00	5.0001 g	0.00	0.5000 g	0.00

Balance IC OHAUS Model Explorer GO451121051238

Appendix H - Gas Cylinder Certifications

CERTIFICATE OF ANALYSIS

Grade of Product: EPA Protocol

Airgas Specialty Gases

12722 South Wentworth Avenue Chicago, IL 60628

(773) 785-3000 Fax: (773) 785-1928

Airgas.com

Part Number: Cylinder Number: E03NI78E15A1066

CC89223

ASG - Chicago - IL

Laboratory: PGVP Number: Gas Code:

B12015 CO2,O2,BALN Reference Number: 54-124500021-7

Cylinder Volume: Cylinder Pressure: 151.1 CF 2015 PSIG

Valve Outlet:

590

Certification Date: Jun 23, 2015

Expiration Date: Jun 23, 2023

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted.

Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals.

			ANALYTICA	L RESULTS		
Compon	ent	Requested Concentration	Actual Concentration	Protocol Method	Total Relative Uncertainty	Assay Dates
CARBON OXYGEN NITROGE		10.00 % 12.00 % Balance	9.926 % 11.98 %	G1 G1	+/- 1.0% NIST Traceable +/- 1.0% NIST Traceable	06/23/2015 06/23/2015
Туре	Lot ID	Cylinder No	CALIBRATION Concentration	STANDARD	S Uncertainty	Expiration Date
NTRM NTRM	06120402 06120204	CC184369 CC195893	19.66 % CARBON D 20.90 % OXYGEN/N		+/- 0.5% +/- 0.4%	May 01, 2016 Dec 01, 2015
instrume	nt/Make/Mod	el	ANALYTICAL Analytical Prin		F Last Multipoint Calil	oration
CO2-1 HC	RIBA VIA-510 \ IBA MPA-510 3	/1E3H7P5	NDIR Paramagnetic		Jun 12, 2015 Jun 16, 2015	

Triad Data Available Upon Request

Allan Hurain

Approved for Release

Page 1 of 54-124500021-7

Airgas

Airgas Specialty Gases

12722 South Wentworth Avenue

Chicago, IL 60628

(773) 785-3000 Fax: (773) 785-1928

www.airgas.com

CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol

Part Number: Cylinder Number: E03NI59E15A3452

CC55028

Laboratory:

ASG - Chicago - IL

PGVP Number: Gas Code:

B12013

CO2,O2

Reference Number:

54-124361680-5

Cylinder Volume:

159.0 CF 2015 PSIG

Cylinder Pressure:

Valve Outlet:

590

Jan 28, 2013

Feb 20, 2013

Certification Date:

Feb 25, 2013

Expiration Date: Feb 25, 2021

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted.

· ·			ANALYTICAL I	RESULTS		
Component		Requested Concentration	Actual Concentration	Protocol Method	Total Relative Uncertainty	Assay Dates
CARBON DIO	XIDE	19.00 %	18.63 %	G1	+/- 1.4% NIST Tracea	able 02/25/2013
OXYGEN		22.00 %	21.96 %	G1	+/- 0.7% NIST Traces	able 02/25/2013
NITROGEN		Balance				
		C	ALIBRATION S	FANDARD:	S	- 01
Туре	Lot ID	Cylinder No	Concentration		Uncertainty	Expiration Date
NTRM/CO2	06120405	CC184974	19.66 % CARBON DIOX	(IDE/NITROGEN	+/- 0.5%	May 01, 2016
		CC195927	20.9 % OXYGEN/NITRO	NOTAL .	+/- 0.4%	Dec 01, 2015

ANALYTICAL EQUIPMENT

Last Multipoint Calibration **Analytical Principle** Instrument/Make/Model

NOIR

Paramagnetic

CO2-1 HORIBA VIA-510 V1E3H7P5

O2-1 HORIBA MPA-510 3VUYL9NR

Triad Data Available Upon

Request Notes:

Approved for Release

Page 1 of 54-124361680-5

Appendix I – Visible Emissions Data and Reader Certification

MOSTARDI PLATT

Visible Emissions Record USEPA Method 9	Form	Date 10 / 6 Site Behr Tro	
Emission Source		Comp	pass Heading
8 70 80 No. 20 10	Observer's	s Location	
Observer: M. Platt Comments: I. In Comments: 2. NW 3 4. No Visab 5. NORMAL		2. W 3. W 4. P	un Position /ind Direction /ind Speed lume Type perating Level

EPA Reference Method 9

Visible Emiss	ions	s Ok	ser	vati	on F	Recoi	rd Fo	orm Sheet	t:	<u>1</u> .	of	
Facility Location:										-ادا		
RLA Associates, Inc.	-						Ohse	rver:	Λ٨.	Plo	η-	
Bohr Iron & Metal	-				x. 1		Obse	rvatio	n Sta	rt :	200	>
Northwest outlet Stack	-		Te	st *	- (•			(
NOAMWEST OFFICE STACK	-											
Observation Point:	><	0	15	30	45	Notes	><	0	15	30	45	Notes
Parling lot Southwest	0	0	0	0	0		30	0	0	0	0	
Parking lot Southwest	1		0	Ó	O		31	0	0	Q	0	
	2	Đ	0	0	0		32	0	0	0	Ó	
	3	0	d	0	Ò		33	0	Ó	0	Ŏ	
Distance from Source: <u>しぢし</u> ft.	4	Ó	Ò	0	Ò		34	0	0	0_	Q	
Source Height: 50 ft.	5	0	0	0	Q		35	0	0	0	Ó	
Emission Color: None	6	0	0	0	0		36	Q	Ŏ	Q	0	
Background: Blue chy	7_	0		0	0		37	0	0	0	0	
	8	0	0	0	0		38	0	õ	Ŏ.	0	
Sky Condition: Chear	9	0	0	0	Q		39	0	Ó	0	0	
	10	0	0	0	0		40	Ď	Ó	Ó	0	
Sun Position: <u>In Compliance</u> Temperature: <u>LOO</u> °F	11	0	0	0	\Box		41	10	0	0	ŏ	
Temperature:60 * °F	12	0	0	0	0		42	0	<u>_</u>	10	Ö	
Wind Direction: <u>Nw</u> at <u>10</u> mph	13	0	0	0	9		43	0	10	Š	10	
Reading Conditions:Fair	14	0	0	0	10		44	Ö	Š	10	0	
	15	0	0	0	9		45 4C	Q	10	오	Š	
	16	Ó	0	10	0		46 47	Ď	0	10	0	
Operating Conditions: NORMAL	17	0	Ö	0	0			9	10	9		
	18	0	0	0	Ö		48 49	ΙĞ	0		8	
	19	10	0	0	0		50	ŏ	Š	0	0	
	20	0	0	0	Ď	-	51	Š	18	8	18	
Plume Description: No Visable	21	0	0	ΙŌ-	Ö	<u> </u>	52	Ö	-	+		
Plume	22	+~	Š	0	18		53	0	0	0	0	
Attached or Detached	23	لم	Ō	10	10	 	54	6		+ -	t —	
14 (24	15	Ö	무	Ĭ		55	+-	10	0	0	
Signature: 1 9 1 A	25	D	Ö	₩	10		56	0	0	0	0	
1 Jan C. Flates	26	ΗĞ	15	Ìŏ	용	-	57	10	10	0	0	
Certification Date:	27	10	18	12	 	-	58	10	10	0	0	
19 2 15	28 29	+-	10	무	0	 	59	10	10	Ö	0	<u> </u>
· V	Note		0	10			Note					<u> </u>
Comments / Process Information:	Nou	.										
	l						1					
i												
				_								

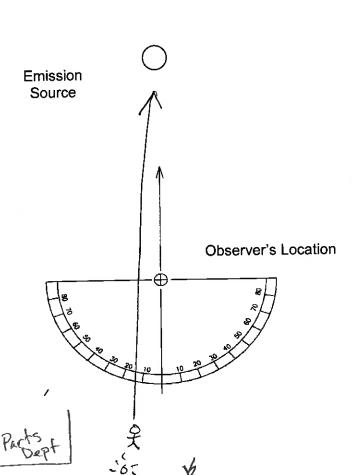
MOSTARDI PLATT

Date 10 / 6 / 15 **Visible Emissions Record Form** Site Behr Iron or Meta **USEPA Method 9** Compass Heading **Emission** Source Observer's Location Observer: Note: 1. Sun Position 2. Wind Direction Comments: 1. In Longhan

EPA Reference Method 9

Wind Speed
 Plume Type
 Operating Level

Visible Emiss	ions	Ob	ser	vatio	on R	tecor	d Fo	rm				,
Alornio mirro	1 10 1	-	, • •			_		Sheet	::	(of	
								Datas	. ,	باء	1,5	1
Facility Location:												
RYA ASSOCIATES. Inc.	-						Obses		M	U D	lutt	_
Behr Iron & Metal	_											
Rockford, IL	-				1		Opse				<u>/5:00</u>	7
Northwest Outlet Stack	_		To	4	#	1			Ena:	16	2.00	
		<u></u>	_					<u> </u>	16	30	45	Notes
Observation Point:	><	0	15	30	45	Notes	×	0	15	_		Notes
Parking lot	0	0	0	0	Q		30	0	ړي	Ŏ	0	
in the working spaces by	1	0	0	Q	0		31	\bigcirc	Ō	ŏ	ď	
in the pathling spaces by the back fence	2	0	0	Q	0		32	9	0	2	ΙŽΠ	
	3	0	0	Ó	0		33	0	0	M	M	
Distance from Source: <u>\し</u> の_ft.	4	0	0	0	0		34_		0	0	ू	
Source Height: 50 ft.	5	0	0	0	0		35	Õ	0	0	0	
Emission Color: NoNら	6	0	0	0	0		36	0	0	0	0	
Background: Blue Sty.	7	0	0	0	0		37	0	0	0	Q	
Duckground.	8	C	0	Q_{\perp}	0		38	0	0	0	0	
Sky Condition: Clear	9	0	Ó		0		39	0	0	0	0	
JRY Condition	10	0	0	0	Õ		40	0	0	0	0	
Sun Position: In Compliance	11	0	0	0	0		41	0	0	0		
Temperature: 60 °F	12	Ó	0	O	0		42	0	0	0	0	
Wind Direction: Nw at 10 mph		Ö	Ó	O	0		43	0	0	0	\Box	
Reading Conditions:	14	0	O	Ö	O		44	0	0	0		
Reading conditions:	15	No.	Ó	Ö	0		45	0	0	0	0	
	16	7	O		0		46	0	0	0	LQ	
Operating Conditions: NoRMAL	17	0	O	10	O		47	0	0		Ō	
Operating conditions:	18	Ö	Ö	0	Ö		48	Ó	0	0	0	
	19	Ö	O	1	Ô		49	0	0	0	\Box 0	
	20	Ö		tă			50	Ő	0	0	0	
Plume Description: No Visable	21	l ਨ	0	6	7		51	0	0	0	0	
Plume Description	22	0	Ö	$1 \tilde{\wedge}$	10		52	0	0		0	
Attached or Detached	23	0	10	0	6		53	0	0	0	0	
Attached of Detached	24	10	1	ŏ	Ŏ	<u> </u>	54	0	0	0	\Box	
Signatura: MA A	25		18	15	O		55	0	0	\Box	Io	
Signature: Mat 2. Flat	26	10	15	1 ~	0		56	0	10	Ta	0	
Certification Date:	27	1	15	18	0		57	0	Tõ	10	0	
Certification Date 1	28	$\vdash \preceq$	18	15	Ŏ		58	10	0	0	0	
	29	18	18	16	10		59	0	0	0	0	
Comments / Process Information:	Note	s:	-				Note	es:		,		
Comments / Process information.												
	l.						1					
j	1											
	1											


Visible Emissions Record Form

Date 10 1 6 1 15 Site Behr IRON 4M

USEPA Method 9

Test 43

Compass Heading

Observer: __M. Platt

Comments: 1 In Comp

Note:

- 1. Sun Position
- 2. Wind Direction
- 3. Wind Speed
- 4. Plume Type
- 5. Operating Level

EPA Reference Method 9

Visible Emiss	sions	s Ob	ser	vati	on F	Recoi	d Fo	orm Sheet	:: <u> </u>		of	1_
Facility Location: RXY ASSOCIATES, INC. Behr IRON & Metal Rockford, IL Northwest after Stack	<u>-</u> 						Obse	rver: _ rvatio	n Star	<u>. </u>	1:35	
Observation Point:	><	0	15	30	45	Notes	><	0	15	30	45	Notes
Balina lot Southeast	0	0	0	0	0		30	O	0	0	0	-
Parking but Southeast	1	0	0	0	0		31	0	0	0	0	
	2	0	0	0	0		32	0	0	0	Д	
	3	0	Q	0	Q		33	0	0	ð	لم	
Distance from Source:150ft.	4_	0	0	0	0		34_	<u>Q</u>	Ŏ	Ŏ	Ö	
Source Height: 50 ft.	5	ő	Ŏ	Q	Ó		35	0	0	0	96	
Emission Color: No NE	6	0	0	Ö	Õ		36 37	90	8	$\stackrel{ \circ}{\sim}$	2	
Background: Tslue Sky	7 8	ŏ	ŏ	욧	ď		38	0	0	18	$\overline{\mathcal{L}}$	
	9	0	$\frac{1}{2}$	0	90		39	6	0	0	Ö	
Sky Condition: Crear	10	15	3	13	0		40	ŏ	$\stackrel{\sim}{\sim}$	<u> </u>	0	
Sun Position: In Compliance		l 8	0	8	$\overline{\circ}$		41	0	Ŏ	0		
Temperature:°F	12	0	0	Ó	0		42	0	Q	0	Ö	
Wind Direction: NW at 5-10 mph			0	0	0		43	0	0	0	0	
Reading Conditions:	14	0	0	0	0		44	0	0		0	
	15	0	0	0	0		45	0	0	0	0	
	16		10	a	Q		46	Q	0	10	0	
Operating Conditions: NORWAL	17	0	0	D	0		47	10	0	0	O_	
	18	9	Q	١Ŏ	ΙŌ		48 49	0	10	19	0	
	19	ΙŎ	ΙQ	<u> </u>	łδ		50	0	0	Ó	Š	
	20	ΗÖ	Ď	 오	18		51	0	0	0	0	
Plume Description: No VISPALL	21	بك	15	$\frac{1}{2}$	0		52	6	0	5	0	
Attached or Detached	23	8		10	12		53				7	
Attached or Detached	24	10	10	10	10		54	Ö	Ö	10	0	
Signature: M L O	25		15	5	10		55	0	0	O	0	
Signature: 1/ Just E. Cal	26		0	Ö	0		56	0	0	0	Ō	
Certification Date:	27		Ö	0	0		57	0	\Box	Q	0	
9015	28	0	0	Ō	Ō		58	Ŏ	10	ا ٥		<u> </u>
	29	$T_{\mathcal{O}}$	0	٥		<u> </u>	59	10		10	0	
Comments / Process Information:	Note	es:					Note	es:				
							ŀ					
1							1					

VISIBLE EMISSIONS EVALUATOR

Martin Platt

This is to certify that the above named observer has met the specifications of Federal Reference Method 9 and is qualified as a visible emissions evaluator. Maximum deviation on white and black smoke did not exceed 7.5% opacity and no single error exceeding 15% opacity was incurred during the certification test conducted by Eastern Technical Associates, Inc. of Raleigh, N.C. This certificate is valid for six months from date of issue.

433050

Certificate #

9/2/2015

Date of Certification

3/3/2016

Certification Expiration Date

PLA465227

Student ID Number

Valparaiso, IN

Location

NonETA

Last Lecture

Marty Hughes

Director of Training

END OF THE REPORT

This Page Left Blank

Emission Test Report Particulate and Metals Emissions

Behr Iron & Metal - Rockford, Illinois Site ID No.: P201030AB

January 19, 2016

APPENDIX D

PARTICULATE MATTER AND TRACE METAL EMISSIONS TEST REPORT TPU BAGHOUSE

Mostardi Plat Environmental Services

This Page Left Blank

Particulate Matter and Trace Metal Emissions Test Report

For: RK & Associates, Inc.
At: Behr Iron & Metal
Rockford Facility
Rotary Dryer Discharge
Rockford, Illinois
Report No. M154005C
October 7, 2015

Particulate Matter and Trace Metal Emissions Test Report

For: RK & Associates, Inc.
At: Behr Iron & Metal
Rockford Facility
Rotary Dryer Discharge
Rockford, Illinois
October 7, 2015

Report Submittal Date January 19, 2016

© Copyright 2016 All rights reserved in Mostardi Platt

Report No. M154005C

TABLE OF CONTENTS

1.0 EXECUTIVE SUMMARY	1
2.0 TEST METHODOLOGY	
Method 3A/3 Oxygen (O ₂)/Carbon Dioxide (CO ₂) Determination	
Method 5 Filterable Particulate Matter Determination	
Method 29 Trace Metals Determination	3
3.0 TEST RESULT SUMMARIES	4
4.0 CERTIFICATION	8
APPENDICES	
Appendix A - Test Section Diagram	10
Appendix B - Sample Train Diagrams	
Appendix C - Calculation Nomenclature and Formulas	
Appendix D- Laboratory Sample Analysis	26
Appendix E - Reference Method Test Data (Computerized Sheets)	61
Appendix F - Field Data Sheets	
Appendix G - Calibration Data	79
Appendix H - Gas Cylinder Certifications	92

1.0 EXECUTIVE SUMMARY

MOSTARDI PLATT conducted a particulate matter and trace metals emissions test program for Behr Iron & Metal at their Rockford facility on the Rotary Dryer Discharge in Rockford, Illinois on October 7, 2015. This report summarizes the results of the test program and test methods used.

The test locations, test date, and test parameters are summarized below.

TEST INFORMATION								
Test Locations	Test Date	Test Parameters						
Rotary Dryer Discharge	October 7, 2015	Filterable Particulate Matter (FPM), Antimony (Sb), Arsenic (As), Barium (Ba), Beryllium (Be), Cadmium (Cd), Chromium (Cr), Cobalt (Co), Copper (Cu), Lead (Pb), Manganese (Mn), Nickel (Ni), Selenium (Se), Silver (Ag), and Zinc (Zn)						

The purpose of the test program was to determine FPM and metal concentrations. Selected results of the test program are summarized below. A complete summary of emission test results follows the narrative portion of this report.

TEST RESULTS SUMMARY								
Test	Test							
Location	Parameter	Concentrations ug/dscm						
	Sb	< 14.19						
	As	< 8.34						
	Ва	< 62.65						
	Be	< 2.08						
	Cd	< 2.28						
[Cr	1,239.51						
Rotary Dryer Discharge	Co	422.44						
	Cu	93,439.82						
	Pb	1,042.50						
	Mn	1,845.68						
	Ni	13,576.13						
	Se	< 29.09						
	Ag	< 5.22						
	Zn	19,378.12						

The S tationary S ource Audit S ample P rogram audit s ample was obtained from E RA and submitted for analysis to Maxxam Analytical. The results of the audit samples were compared to the assigned value by ERA and found to be acceptable. The audit sample results and evaluation is appended to this report.

Due to the lack of volumetric flow at this test location, single point non isokinetic test runs were performed.

The identifications of the individuals associated with the test program are summarized below.

	TEST PERSONNEL INFORMATION								
Location	Address	Contact							
Test Coordinator	RK & Associates, Inc. 2S631 Route 59, Suite B Warrenville, Illinois 60555	Mr. John Pinion Associate Engineer (630) 393-9000 x 208 jpinion@rka-inc.com							
Test Facility	Behr Iron & Metal 1100 Seminary Street Rockford, Illinois 61104	Mr. Ron Coupar Environmental Manager (815) 987-2770 rcoupar@behrim.com							
Testing Company Representative	Mostardi Platt 888 Industrial Drive Elmhurst, Illinois 60126	Mr. Mark Peterson Project Manager (630) 993-2100 (phone) mpeterson@mp-mail.com							

The test crew consisted of Messrs. B. Schuler, B. Tarra, D. Kossack, J. Howe, K. Johnson, M. Karum, M. Lipinski, M. Platt, N. Colangelo, S. Cleary and M. Peterson of Mostardi Platt.

2.0 TEST METHODOLOGY

Emission testing was conducted following the methods specified in 40CFR60, Appendix A. A schematic of the test section diagrams are found in Appendix A and schematics of the sampling trains used are included in Appendix B. Calculation nomenclature and sample calculations are included in Appendix C. Laboratory analysis data are found in Appendix D. Copies of electronic data for each test run are included in Appendix E and field data sheets are found in Appendix F.

The following methodologies were used during the test program:

Method 1 Traverse Point Determination

Test measurement points were selected in accordance with Method 1. The characteristics of the measurement location are summarized below.

TEST POINT INFORMATION									
Test Location	Location Diameters	Upstream Diameters	Downstream Diameters	Test Parameters	Number of Sampling Points				
Rotary Dryer Discharge	18 Inches	>0.5	>2.0	FPM, Sb, As, Ba, Be, Cd, Cr, Co, Cu, Pb, Mn, Ni, Se, Ag, Zn	1				

Absence of cyclonic flow tests were performed prior to testing at each location and each location met the minimum criteria.

Method 3A/3 Oxygen (O₂)/Carbon Dioxide (CO₂) Determination

Flue gas molecular weight was determined in accordance with Method 3A during the first test run. Servomex analyzers were used to determine stack gas oxygen and carbon dioxide content and, by difference, nitrogen content. All of the equipment used was calibrated in accordance with the specifications of the Method. Calibration data are presented in Appendix G and copies of the gas cylinder certifications are found in Appendix H. For all additional test runs the flue gas molecular weight was determined in accordance with Method 3. A Fyrite analyzer was used to determine stack gas oxygen and carbon dioxide content and, by difference, nitrogen content.

Method 5 Filterable Particulate Matter Determination

Flue gas filterable particulate matter concentrations and emission rates were determined by a single point and at a constant rate of the delta H of the meter. The probe and filter housing were maintained at a temperature of 248 °F + /- 25°F. A n E nvironmental S upply C ompany, I nc. sampling train was used. Four impingers were utilized, the first two each containing 100 ml of 0.1N Nitric Peroxide (N_2O_2), the third remained empty, and the fourth contained approximately 200 grams of silica gel. The impingers were weighed prior to and after each test run in order to determine moisture content of the stack gas. A minimum of 60 dry standard cubic feet was sampled for each run.

Particulate matter in the sample probe was recovered utilizing acetone; three passes of the probe brush through the entire probe was performed, followed by a visual inspection of the acetone exiting the probe. The acetone solution exiting the probe was clear, and therefore the wash was considered complete. The nozzle was then removed from the probe and cleaned in a similar manner, utilizing an appropriately sized nozzle brush. The filter and filter housing were recovered in a clean area. The filter housing was washed a minimum of three times with acetone and inspected for cleanliness, and the filter was placed in its corresponding petri dish. The acetone wash and the filter were labeled and marked, then analyzed at the Mostardi Platt Laboratory by Mostardi Platt personnel in accordance with the Method. All sample data analysis, are found in Appendix D. All of the equipment used is calibrated in accordance with the specifications of the Method. Calibration data are presented in Appendix G.

Method 29 Trace Metals Determination

Stack gas metals concentrations and emission rates were determined by a single point and at a constant rate of the delta H of the meter in conjunction with the Method 5 S ampling. An Environmental Supply Company, Inc. sampling train was used to sample stack gas. Analyses of the samples collected were conducted by Maxxam. Samples were analyzed for the following metals, using I nductively C oupled Argon Plasma emission spectroscopy (ICP): Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Cobalt, Copper, Lead, Manganese, Nickel, Selenium, Silver, and Zinc. All of the equipment used was calibrated in accordance with the specifications of the Method. Calibration dat a is presented in the Appendix G.

3.0 TEST RESULT SUMMARIES

Client: Rk & Associates, Inc.

Facility: Behr Iron and Metal Rockford Facility

Test Location: Rotary Dryer Discharge

rest Location.	Rotary Dryer Discharge				
Test Method:	5/29				
	Source Condition	Normal	Normal	Normal	
	Date	10/7/15	10/7/15	10/7/15	
	Start Time	8:20	11:05	13:48	
	End Time	10:20	13:05	15:48	
		Run 1	Run 2	Run 3	Average
	Stack C	onditions			_
	Average Gas Temperature, °F	450.9	411.0	555.8	472.6
Flue Gas	Moisture, percent by volume	2.3%	2.2%	2.8%	2.4%
A	Average Flue Pressure, in. Hg	29.02	29.35	29.35	29.24
	Gas Sample Volume, dscf	81.593	87.454	88.732	85.926
	Average Gas Velocity, ft/sec	0.000	0.000	0.000	0.000
Ga	s Volumetric Flow Rate, acfm	0	0	0	0
Gas	Volumetric Flow Rate, dscfm	0	0	0	0
Ga	s Volumetric Flow Rate, scfm	0	0	0	0
Average	e %CO ₂ by volume, dry basis	0.0	0.0	0.0	0.0
Avera	ge %O ₂ by volume, dry basis	20.9	20.9	20.9	20.9
	Filterable Particula	te Matter (I	Method 5)		
	grams collected	0.7500	0.6159	0.9756	0.7805
	grains/dscf	0.1418	0.1087	0.1697	0.1401

Client: Rk & Associates, Inc.

Facility: Behr Iron and Metal Rockford Facility

Test Location: Rotary Dryer Discharge

Test Method: 5/29

Source Condition Date Start Time End Time		Normal 10/7/15 8:20 10:20 Run 1		Normal 10/7/15 11:05 13:05 Run 2		Normal 10/7/15 13:48 15:48 Run 3		Average
	Stac	k Condition	ns	Itan 2		- ruii o		Avorago
Average Gas Temperature, °F		450.9		411.0		555.8		472.6
Flue Gas Moisture, percent by volume		2.3%		2.2%		2.8%		2.4%
Average Flue Pressure, in. Hg		29.02		29.35		29.35		29.24
Gas Sample Volume, dscf		81.593		87.454		88.732		85.926
Average Gas Velocity, ft/sec		0.000		0.000		0.000		0.000
Gas Volumetric Flow Rate, acfm		0		0		0		0
Gas Volumetric Flow Rate, dscfm		0		0		0		0
Gas Volumetric Flow Rate, scfm		0		0		0		0
Average %CO ₂ by volume, dry basis		0.0		0.0		0.0		0.0
Average %O ₂ by volume, dry basis		20.9		20.9		20.9		20.9
Antii	mon	y (Sb) Emis	ssion	ıs				
ug of sample collected		35.38		40.75	≤	27.16	≤	34.43
ppb		3.02		3.25	≤	2.13	≤	2.80
ug/dscm		15.31		16.46	≤	10.81	≤	14.19
		c (As) Emiss						
ug of sample collected		20.26	≤	20.20	≤	20.36	≤	20.27
ppb		2.81	≤	2.62	≤	2.60	≤	2.68
ug/dscm		8.77	_ ≤	8.16	≤	8.10	≤	8.34
		m (Be) Emis				F 0F		5.05
ug of sample collected ppb		5.05 5.83	≤ ≤	5.05 5.44	≤ ≤	5.05 5.36	≤ ≤	5.05 5.54
ррь ug/dscm		2.19	<u> </u>	2.04	<u> </u>	2.01	<u> </u>	2.08
		m (Cd) Emis				2.01		2.00
ug of sample collected	mai	6.55	<u> </u>	5.00	≤	5.00	≤	5.52
ppb		0.61	_ ≤	0.43	_ ≤	0.43	_ ≤	0.49
ug/dscm		2.83	≤	2.02	≤	1.99	≤	2.28
	miu	ım (Cr) Emi	ssior					
ug of sample collected		4369.73		2839.40		1710.28		2973.14
ppb		874.32		530.05		314.67		573.01
ug/dscm		1891.27		1146.57		680.68		1239.51

Client: Rk & Associates, Inc.

Facility: Behr Iron and Metal Rockford Facility

Test Location: Rotary Dryer Discharge

Test Method: 5/29

st wethou: 3/29				
Source Condition	Normal	Normal	Normal	
Date	10/7/15	10/7/15	10/7/15	
Start Time	8:20	11:05	13:48	
End Time	10:20	13:05	15:48	
	Run 1	Run 2	Run 3	Average
St	ack Conditions	i		
Average Gas Temperature, °F	450.9	411.0	555.8	472.6
Flue Gas Moisture, percent by volume	2.3%	2.2%	2.8%	2.4%
Average Flue Pressure, in. Hg	29.02	29.35	29.35	29.24
Gas Sample Volume, dscf	81.593	87.454	88.732	85.926
Average Gas Velocity, ft/sec	0.000	0.000	0.000	0.000
Gas Volumetric Flow Rate, acfm	0	0	0	0
Gas Volumetric Flow Rate, dscfm	0	0	0	0
Gas Volumetric Flow Rate, scfm	0	0	0	0
Average %CO ₂ by volume, dry basis	0.0	0.0	0.0	0.0
Average %O ₂ by volume, dry basis	20.9	20.9	20.9	20.9
	alt (Co) Emissio	ns		
ug of sample collected	740.23	1451.58	906.46	1032.76
ppb	130.67	239.06	147.14	172.29
ug/dscm	320.38	586.16	360.77	422.44
Сорр	er (Cu) Emissi	ons		
ug of sample collected	66316.30	149008.10	481028.10	232117.50
ppb	10855.26	22756.46	72404.71	35338.81
ug/dscm	28702.54	60170.65	191446.27	93439.82
	d (Pb) Emissioı			
ug of sample collected	3221.56	1930.96	2395.56	2516.03
ppb	161.75	90.45	110.60	120.93
ug/dscm	1394.33	779.74	953.42	1042.50
	nese (Mn) Emis			
ug of sample collected	8859.20	3589.23	636.44	4361.62
ppb	1677.42	634.05	110.81	807.43
ug/dscm	3834.37	1449.36	253.30	1845.68
	el (Ni) Emissio			
ug of sample collected	46604.44	29908.12	21307.49	32606.68
ppb	8257.54	4944.10	3471.62	5557.75
ug/dscm	20171.00	12077.14	8480.25	13576.13

Client: Rk & Associates, Inc.

Facility: Behr Iron and Metal Rockford Facility

Test Location: Rotary Dryer Discharge

Test Method: 5/29

Source Condition Date Start Time End Time		Normal 10/7/15 8:20 10:20 Run 1		Normal 10/7/15 11:05 13:05 Run 2		Normal 10/7/15 13:48 15:48 Run 3		Average
	Sta	ck Condition	าร	IXUII Z		Ruit 5		Average
Average Gas Temperature, °F		450.9		411.0		555.8		472.6
Flue Gas Moisture, percent by volume		2.3%		2.2%		2.8%		2.4%
Average Flue Pressure, in. Hg		29.02		29.35		29.35		29.24
Gas Sample Volume, dscf		81.593		87.454		88.732		85.926
Average Gas Velocity, ft/sec		0.000		0.000		0.000		0.000
Gas Volumetric Flow Rate, acfm		0		0		0		0
Gas Volumetric Flow Rate, dscfm		0		0		0		0
Gas Volumetric Flow Rate, scfm		0		0		0		0
Average %CO ₂ by volume, dry basis		0.0		0.0		0.0		0.0
Average %O ₂ by volume, dry basis		20.9		20.9		20.9		20.9
	niu	m (Se) Emis	sior	าร				
ug of sample collected	≤	58.92	≤	102.50	≤	51.20	≤	70.87
ppb	≤	7.76	≤	12.60	≤	6.20	≤	8.85
ug/dscm	≤	25.50	≤	41.39	≤	20.38	≤	29.09
	ver	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ions					
ug of sample collected		10.10	≤	10.10	≤	18.10	≤	12.77
ppb		0.97	≤	0.91	≤	1.61	≤	1.16
ug/dscm		4.37	≤	4.08	≤	7.20	≤	5.22
	nc	(Zn) Emissio	ons	20242.52		1001.00		45540.00
ug of sample collected		103017.70		29219.50		4391.80		45543.00
ppb		16393.39		4338.15		642.65		7124.73
ug/dscm		44587.37	.iar	11799.07		1747.91		19378.12
ug of sample collected		n (Ba) Emiss 151.50	sion: ≤	s 151.50	≤	153.80	≤	152.27
	≤ ≤	151.50	≥ ≤	10.71	≥ ≤	103.60	≥ ≤	10.97
ppb								
ug/dscm	≤	65.57	≤	61.18	≤	61.21	≤	62.65

4.0 CERTIFICATION

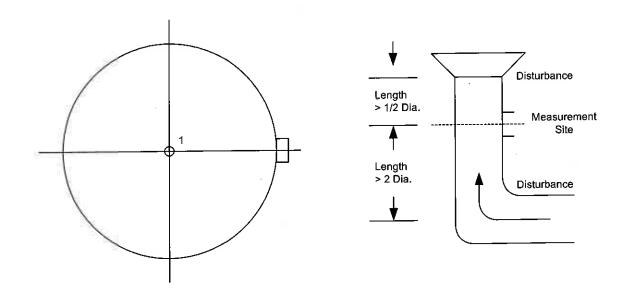
MOSTARDI PLATT is pleased to have been of service to RK & Associates, Inc. If you have any questions regarding this test report, please do not hesitate to contact us at 630-993-2100.

CERTIFICATION

MOSTARDI PLATT

As pr oject manager, I hereby c ertify t hat this t est r eport r epresents a t rue and a ccurate summary of emissions test results and the methodologies employed to obtain those results, and the test program was performed in accordance with the methods specified in this test report.

Mark E. Peterson


Program Manager

A guality Assurance

APPENDICES

Appendix A - Test Section Diagrams

EQUAL AREA TRAVERSE FOR ROUND DUCTS

Job: Behr Iron & Metal

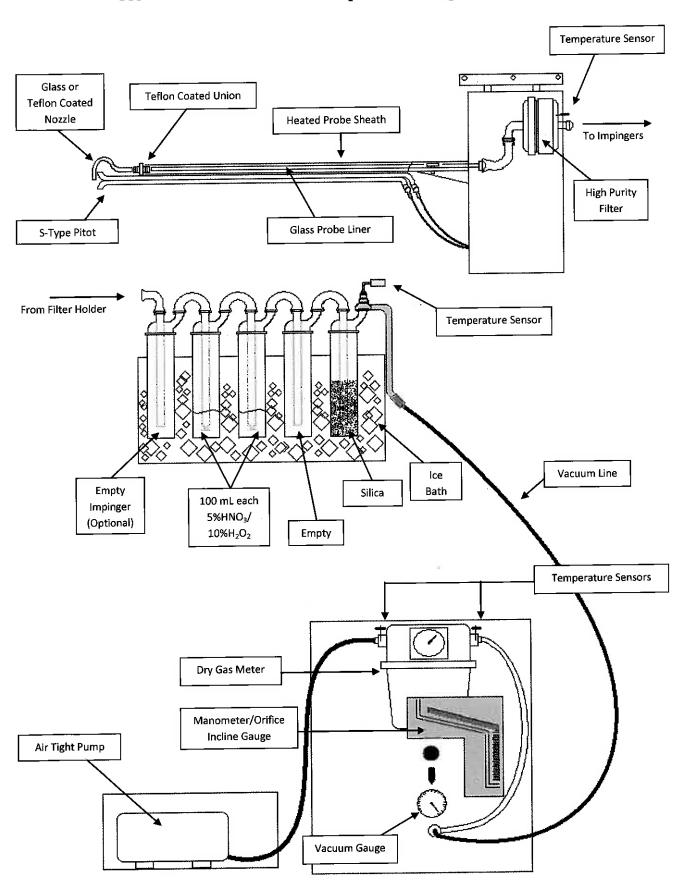
Date: October 7, 2015

Test Location: Thermal Reduction Unit (TPU)

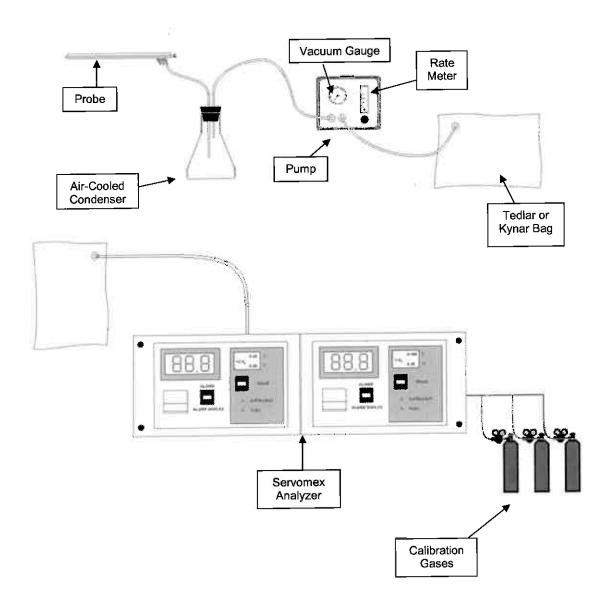
Duct Diameter: 18"

. 10

Duct Area: 1.767


No. Points Across Diameter: 1

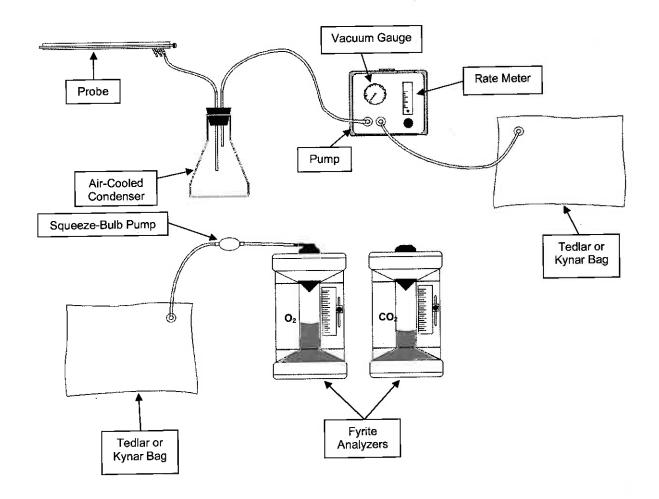
No. of Ports: 1


Port Length: 4"

Appendix B - Sample Train Diagrams

USEPA Method 29- Metals Sample Train Diagram

USEPA Method 3A - Integrated Oxygen/Carbon Dioxide Sample Train Diagram Utilizing Tedlar Gas Bag



ATD-013 USEPA Method 3A Gas Bag with Servomex

Rev. 1.1

8/17/2015

USEPA Method 3 - Integrated Oxygen/Carbon Dioxide Sample Train Diagram Utilizing Fyrite Gas Analyzer

8/17/2015

15 of 95

D-18

Appendix C - Calculation Nomenclature and Formulas

Client:

Rk & Associates, Inc.

Facility:

Behr Iron and Metal Rockford Facility

Test Location:

TPU Baghouse Inlet

Run:

Date:

10/7/2015

Method:

5/29

Source Condition:

Normal

Dry Molecular Weight

$$Md = 0.44 \times (\%CO_2) + 0.32 \times (\%O_2) + 0.28 \times \%N_2$$

$$%CO_2 = 0.0$$
 $%O_2 = 20.9$ $%N_2 = 79.1$

Wet Molecular Weight

$$Ms = Md \times (1-Bws) + (18.0 \times Bws)$$

$$Md = 28.836$$

Bws = 0.023

Meter Volume at Standard Conditions

17.647 x Y x Vm x (Pbar +DH/13.6)

Vm = 81.935 Pbar = 29.39 Tm = 531.4

Volume of Water Vapor Condensed

 $Vw(std) = 0.0471 \times (net H₂O gain)$

Moisture Content

Vw(std) = 1.912 Vm(std) = 81.593

Client:

Rk & Associates, Inc.

Facility:

Behr Iron and Metal Rockford Facility

Test Location:

TPU Baghouse Inlet

Run:

Date:

10/7/2015

Method:

5/29

Source Condition:

Normal

PM Concentration:

This example represents the filterable fraction. For other fractions, use the obtained mn for that particulate fraction.

$$Co = \frac{m_n \times 15.43}{Vm(std)}$$

Client:

Rk & Associates, Inc.

Facility:

Behr Iron and Metal Rockford Facility

Test Location:

TPU Baghouse Inlet

Run:

Date: Method: 10/7/2015

5/29

Source Condition:

Normal

Dry Molecular Weight

$$Md = 0.44 \times (\%CO_2) + 0.32 \times (\%O_2) + 0.28 \times \%N_2$$

$$%CO_2 = ____0.0$$

 $%CO_2 = ____0.0 ____ %O_2 = ____20.9 ____$

 $%N_2 = 79.1$

Wet Molecular Weight

$$Ms = Md \times (1-Bws) + (18.0 \times Bws)$$

Md = 28.836 Bws = 0.023

Meter Volume at Standard Conditions

Vm(std) = 81.593

Volume of Water Vapor Condensed Vw(std) =

0.0471 x (net H₂O gain)

Moisture Content

Bws = _____0.023____

Rk & Associates, Inc. Client:

Behr Iron and Metal Rockford Facility Facility:

TPU Baghouse Inlet Test Location:

Run:

10/7/2015 Date: 5/29 Method: **Source Condition:** Normal

Antimony (Sb) Concentration:

$$\mu$$
g/m³= μ g of Antimony (Sb)
Vm(std) x 0.02832 m³/ft³

$$\mu g = 35.38$$
 Vm(std) = 81.593

Volumetric Flow Nomenclature

- A = Cross-sectional area of stack or duct, ft2
- Bws = Water vapor in gas stream, proportion by volume
- Cp = Pitot tube coefficient, dimensionless
- Md = Dry molecular weight of gas, lb/lb-mole
- Ms = Molecular weight of gas, wet basis, lb/lb-mole
- Mw = Molecular weight of water, 18.0 lb/lb-mole
- Pbar = Barometric pressure at testing site, in. Hg
 - Pg = Static pressure of gas, in. Hg (in. H2O/13.6)
 - DH= Static pressure of gas, in.H2O
 - Ps = Absolute pressure of gas, in. Hg = Pbar + Pg
- Pstd = Standard absolute pressure, 29.92 in. Hg
- Acfm = Actual volumetric gas flow rate
- Scfm= Volumetric gas flow rate, corrected to standard conditions
- Dscfm = Standard volumetric flow rate, corrected to dry conditions
 - R = Ideal gas constant, 21.85 in. Hg-ft3/°R-lb-mole
 - Ts = Average stack gas temperature, °F
 - Tm = Average dry gas meter temperature, oF
 - Tstd = Standard absolute temperature, 528°R
 - vs = Gas velocity, ft/sec
- Vm(std)= Volume of gas sampled, corrected to standard conditions, scf
- Vw(std) = Volume of water vapor in gas sample, corrected to standard conditions, scf
 - VIc= Volume of liquid collected
 - Y = Dry gas meter calibration factor
 - Δp = Velocity head of gas, in. H2O
 - K1 = 17.647 °R/in. Hg
 - %EA = Percent excess air
- %CO2 = Percent carbon dioxide by volume, dry basis
 - %O2 = Percent oxygen by volume, dry basis
 - %N2 = Percent nitrogen by volume, dry basis
- 0.264 = Ratio of O2 to N2 in air, v/v
- 0.28 = Molecular weight of N2 or CO, divided by 100
- 0.32 = Molecular weight of O2 divided by 100
- 0.44 = Molecular weight of CO2 divided by 100
- 13.6 = Specific gravity of mercury (Hg)

Volumetric Air Flow Calculations

$$Vm (std) = 17.647 \times Vm \times \left[\frac{\left(P_{bar} + \left[\frac{DH}{13.6} \right] \right)}{(460 + Tm)} \right] \times Y$$

$$Vw(std) = 0.0471 \times Vlc$$

$$Bws = \left[\frac{Vw (std)}{Vw (std) + Vm (std)}\right]$$

$$Md = (0.44 \times \%CO_2) + (0.32 \times \%O_2) + [0.28 \times (100 - \%CO_2 - \%O_2)]$$

$$Ms = Md \times (1 - Bws) + (18 \times Bws)$$

$$Vs = \sqrt{\frac{(Ts + 460)}{Ms \times Ps}} \times \sqrt{DP} \times Cp \times 85.49$$

 $Acfm = Vs \times Area (of stack or duct) \times 60$

$$Scfm = Acfm \times 17.647 \times \left[\frac{Ps}{(460 + Ts)} \right]$$

$$Scfh = Scfm \times 60 \frac{min}{hr}$$

$$Dscfm = Scfm \times (1 - Bws)$$

Isokinetic Nomenclature

```
A = Cross-sectional area of stack or duct, square feet
```

A_n = Cross-sectional area of nozzle, square feet

Bws = Water vapor in gas stream, by volume

C_a = Acetone blank residue concentration, g/g

Cacf = Concentration of particulate matter in gas stream at actual conditions, gr/acf

 C_p = Pitot tube coefficient

Cs = Concentration of particulate matter in gas stream, dry basis, corrected to standard conditions, gr/dscf

IKV = Isokinetic sampling variance, must be 90.0 % ≤ IKV ≤ 110.0%

M_d = Dry molecular weight of gas, lb/lb-mole

M_s = Molecular weight of gas, wet basis, lb/lb-mole

M_w = Molecular weight of water, 18.0 lb/lb-mole

m_a = Mass of residue of acetone after evaporation, grams

P_{bar} = Barometric pressure at testing site, inches mercury

P_q = Static pressure of gas, inches mercury (inches water/13.6)

 P_s = Absolute pressure of gas, inches mercury = P_{bar} + P_g

P_{std} = Standard absolute pressure, 29.92 inches mercury

Q_{acfm} = Actual volumetric gas flow rate, acfm

Q_{sd} = Dry volumetric gas flow rate corrected to standard conditions, dscfh

R = Ideal gas constant, 21.85 inches mercury cubic foot/°R-lb-mole

T_m = Dry gas meter temperature, °R

T_s = Gas temperature, °R

T_{std} = Absolute temperature, 528°R

V_a = Volume of acetone blank, ml

V_{aw} = Volume of acetone used in wash, ml

W_a = Weight of residue in acetone wash, grams

m_n = Total amount of particulate matter collected, grams

V_{1c} = Total volume of liquid collected in impingers and silica gel, ml

V_m = Volume of gas sample as measured by dry gas meter, dcf

V_{m(std)} = Volume of gas sample measured by dry gas meter, corrected to standard conditions, dscf

v_s = Gas velocity, ft/sec

 $V_{w(std)}$ = Volume of water vapor in gas sample, corrected to standard conditions, scf

Y = Dry gas meter calibration factor

 ΔH = Average pressure differential across the orifice meter, inches water

 Δp = Velocity head of gas, inches water

 ρ_a = Density of acetone, 0.7855 g/ml (average)

 ρ_w = Density of water, 0.002201 lb/ml

 θ = Total sampling time, minutes

 $K_1 = 17.647 \, ^{\circ}\text{R/in. Hg}$

 $K_2 = 0.04707 \text{ ft}^3/\text{ml}$

 $K_4 = 0.09450/100 = 0.000945$

 K_p = Pitot tube constant, $85.49 \frac{ft}{sec} \left[\frac{(lb/lb-mole)(in. Hg)}{(^oR)(in. H_2O)} \right]^{1/2}$

%EA = Percent excess air

%CO₂ = Percent carbon dioxide by volume, dry basis

%O₂ = Percent oxygen by volume, dry basis

%CO = Percent carbon monoxide by volume, dry basis

%N₂ = Percent nitrogen by volume, dry basis

 $0.264 = Ratio of O_2 to N_2 in air, v/v$

28 = Molecular weight of N2 or CO

32 = Molecular weight of O2

44 = Molecular weight of CO₂

13.6 = Specific gravity of mercury (Hg)

Isokinetic Calculation Formulas

1.
$$V_{w(std)} = V_{lc} \left(\frac{\rho_w}{M_w} \right) \left(\frac{RT_{std}}{P_{std}} \right) = K_2 V_{lc}$$

$$2. \ V_{m(std)} = V_m Y \left(\frac{T_{std}}{T_m}\right) \left(\frac{(P_{bar} + (\frac{\Delta H}{13.6}))}{P_{std}}\right) = K_1 V_m Y \frac{(P_{bar} + (\frac{\Delta H}{13.6}))}{T_m}$$

3.
$$B_{ws} = \frac{V_{w(std)}}{(V_{m(std)} + V_{w(std)})}$$

4.
$$M_d = 0.44(\%CO_2) + 0.32(\%O_2) + 0.28(\%N_2)$$

5.
$$M_s = M_d(1-B_{ws}) + 18.0(B_{ws})$$

6.
$$C_a = \frac{m_a}{V_a \rho_a}$$

7.
$$W_a = C_a V_{aw} \rho_a$$

8.
$$C_{acf} = 15.43K_i \left(\frac{m_n P_s}{V_{w(std)} + V_{m(std)} T_s} \right)$$

9.
$$C_S = (15.43 \text{ grains/gram}) (m_n/V_{m(std)})$$

10.
$$v_s = K_p C_p \sqrt{\frac{\Delta P T_s}{P_s M_s}}$$

11.
$$Q_{acfm} = v_s A(60_{sec/min})$$

12.
$$Q_{sd} = (3600_{sec/hr})(1-B_{ws})v_s \left(\frac{T_{std}P_s}{T_sP_{std}}\right) A$$

13. E (emission rate, lbs/hr) =
$$Q_{std}(C_s/7000 \text{ grains/lb})$$

14.
$$IKV = \frac{T_s V_{m(std)} P_{std}}{T_{std} V_s \theta A_n P_s 60 (1 - B_{ws})} = K_4 \frac{T_s V_{m(std)}}{P_s V_s A_n \theta (1 - B_{ws})}$$

15. %EA =
$$\left(\frac{\%O_2 - (0.5\%CO)}{0.264\%N_2 - (\%O_2 - 0.5\%CO)}\right) \times 100$$

Rev. 1.0

Trace Metal (Including Mercury) Sample Calculations

Concentration

$$\frac{\mu g}{m^3} = \frac{\mu g \text{ of trace metal}}{dscf \text{ volume sampled} \times 0.02832 \frac{m^3}{ft^3}}$$

Emission Rate

$$\frac{\mu g \ of \ sample \times \frac{1 \times 10^{-6} grams}{\mu g}}{453.6 \ gr/lb} = lbs \ of \ trace \ metal$$

$$\frac{lbs\ of\ trace\ metal}{V_m(std)sample} \times dscfm \times 60 \\ \frac{min}{hr} = lbs\ of\ trace\ metal/hr$$

D-28

Appendix D - Laboratory Sample Analysis

Your Project #: M154005 Site Location: ROCKFORD

Attention:Data Reporting

Mostardi Platt 888 Industrial Rd Elmhurst, IL USA 60126-1121

Report Date: 2015/10/29

Report #: R3738352 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B5L0981 Received: 2015/10/16, 14:00

Sample Matrix: Stack Sampling Train # Samples Received: 27

Analyses	Quantity	Date Extracted	Date Analyzed	Laboratory Method	Reference
Metals B.H. in H2O2/HNO3 Imp.(6020A)	25	2015/10/27	2015/10/27	BRL SOP-00103 / BRL SO 00102	P- EPA M29/CARB 436 m
Metals F.H. in Filter + Rinses (6020A)	26	2015/10/28	2015/10/28	BRL SOP-00103/ BRL SOF 00102	- EPA M29/CARB 436 m
Metals in Liquid by ICP/MS (6020A)	1	2015/10/27	2015/10/27	BRL SOP-00103	EPA 3010A/6020A m

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

Encryption Key

___Clayton Johnson

29 Oct 2015 14:40:59 -04:00

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Clayton Johnson, Project Manager - Air Toxics, Source Evaluation

Email: CJohnson@maxxam.ca

Phone# (905)817-5769

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Mostardi Platt

Client Project #: M154005 Site Location: ROCKFORD

EPA M29 METALS (FRONT & BACK SEPARATE)

Maxxam ID		BEC523		BEC552	BEC552			
Sampling Date				2015/10/06	2015/10/06			
	UNITS	M5/29-BLANK	RDL	M5/29-NW BAGHOUSE-T1	M5/29-NW BAGHOUSE-T1 Lab-Dup	RDL	QC Batch	MDL
Front Half Antimony (Sb)	ug	<0.40	0.40	37.6	38.1	0.80	4248555	0.080
Front Half Arsenic (As)	ug	<0.40	0.40	33.8	33.5	0.80	4248555	0.080
Front Half Barium (Ba)	ug	5.7	3.0	12.9	12.8	6.0	4248555	0.80
Front Half Beryllium (Be)	ug	<0.10	0.10	<0.20	<0.20	0.20	4248555	0.040
Front Half Cadmium (Cd)	ug	<0.10	0.10	0.91	0.86	0.20	4248555	0.040
Front Half Chromium (Cr)	ug	1.33	0.30	11.0	10.5	0.60	4248555	0.10
Front Half Cobalt (Co)	ug	<0.10	0.10	17.7	17.4	0.20	4248555	0.020
Front Half Copper (Cu)	ug	<2.0	2.0	346	339	4.0	4248555	0.20
Front Half Lead (Pb)	ug	0.94	0.20	795	781	0.40	4248555	0.040
Front Half Manganese (Mn)	ug	1 .41	0.75	16.7	16.2	1.5	4248555	0.10
Front Half Nickel (Ni)	ug	<0.50	0.50	71.6	70.6	1.0	4248555	0.20
Front Half Selenium (Se)	ug	<1.0	1.0	<2.0	<2.0	2.0	4248555	0.50
Front Half Silver (Ag)	ug	<0.20	0.20	<0.40	<0.40	0.40	4248555	0.040
Front Half Zinc (Zn)	ug	<5.0	5.0	348	344	10	4248555	1.0
Back Half Antimony (Sb)	ug	<0.20	0.20	<0.20	<0.20	0.20	4246778	0.040
Back Half Arsenic (As)	ug	<0.20	0.20	0.57	0.57	0.20	4246778	0.040
Back Half Barium (Ba)	ug	<1.5	1.5	1.8	1.8	1.5	4246778	0.040
Back Half Beryllium (Be)	ug	<0.050	0.050	<0.050	<0.050	0.050	4246778	0.050
Back Half Cadmium (Cd)	ug	0.128	0.050	0.281	0.279	0.050	4246778	0.030
Back Half Chromium (Cr)	ug	0.62	0.15	1.23	1.23	0.15	4246778	0.070
Back Half Cobalt (Co)	ug	<0.050	0.050	0.272	0.273	0.050	4246778	0.010
Back Half Copper (Cu)	ug	<2.0	2.0	3.6	3.5	2.0	4246778	1.6
Back Half Lead (Pb)	ug	0.50	0.10	3.24	3.29	0.10	4246778	0.040
Back Half Manganese (Mn)	ug	0.61	0.25	0.86	0.86	0.25	4246778	0.060
Back Half Nickel (Ni)	ug	0.49	0.25	0.93	0.94	0.25	4246778	0.060
Back Half Selenium (Se)	ug	<0.50	0.50	<0.50	<0.50	0.50	4246778	0.20
Back Half Silver (Ag)	ug	<0.10	0.10	0.33	0.33	0.10	4246778	0.020
Back Half Zinc (Zn)	ug	<2.5	2.5	9.7	9.8	2.5	4246778	0.60

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Mostardi Platt

Client Project #: M154005 Site Location: ROCKFORD

EPA M29 METALS (FRONT & BACK SEPARATE)

Maxxam ID	·	BEC553	BEC555		BEC556			<u> </u>
Sampling Date		2015/10/06	2015/10/06		2015/10/06			
	UNITS	M5/29-NW BAGHOUSE-T2	M5/29-NW BAGHOUSE-T3	RDL	M5/29- BAGHOUSE SAND SEPARATOR-T1	RDL	QC Batch	MDL
Front Half Antimony (Sb)	ug	14.4	13.8	0.80	241	2.0	4248555	0.080
Front Half Arsenic (As)	ug	13.0	11.0	0.80	12.0	2.0	4248555	0.080
Front Half Barium (Ba)	ug	9.6	8.8	6.0	113	15	4248555	0.80
Front Half Beryllium (Be)	ug	<0.20	<0.20	0.20	<0.50	0.50	4248555	0.040
Front Half Cadmium (Cd)	ug	0.47	0.56	0.20	10.7	0.50	42 485 55	0.040
Front Half Chromium (Cr)	ug	5.98	5.58	0.60	73.9	1.5	4248555	0.10
Front Half Cobalt (Co)	ug	6.74	6.25	0.20	57.7	0.50	4248555	0.020
Front Half Copper (Cu)	ug	183	278	4.0	30600	40	4248555	0.20
Front Half Lead (Pb)	ug	408	469	0.40	20900	4.0	4248555	0.040
Front Half Manganese (Mn)	ug	8.7	10.6	1.5	826	3.8	4248555	0.10
Front Half Nickel (Ni)	ug	29.3	28.7	1.0	332	2.5	4248555	0.20
Front Half Selenium (Se)	ug	<2.0	<2.0	2.0	<5.0	5.0	4248555	0.50
Front Half Silver (Ag)	ug	<0.40	<0.40	0.40	11.8	1.0	4248555	0.040
Front Half Zinc (Zn)	ug	169	171	10	8980	25	4248555	1.0
Back Half Antimony (Sb)	ug	<0.20	<0.20	0.20	<0.20	0.20	4246778	0.040
Back Half Arsenic (As)	ug	0.47	0.35	0.20	<0.20	0.20	4246778	0.040
Back Half Barium (Ba)	ug	1.8	<1.5	1.5	2.6	1.5	4246778	0.040
Back Half Beryllium (Be)	ug	<0.050	<0.050	0.050	<0.050	0.050	4246778	0.050
Back Half Cadmium (Cd)	uġ	1.28	2.36	0.050	0.275	0.050	4246778	0.030
Back Half Chromium (Cr)	ug	1.05	0.91	0.15	1.80	0.15	4246778	0.070
Back Half Cobalt (Co)	ug	0.185	0.363	0.050	0.264	0.050	4246778	0.010
Back Half Copper (Cu)	ug	3.0	6.3	2.0	2.2	2.0	4246778	1.6
Back Half Lead (Pb)	ug	2.97	2.61	0.10	2.66	0.10	4246778	0.040
Back Half Manganese (Mn)	ug	1.06	1.01	0.25	.5 1.61	0.25	4246778	0.060
Back Half Nickel (Ni)	ug	1,17	1.00	0.25	1.29	0.25	4246778	0.060
Back Half Selenium (Se)	ug	<0.50	<0.50	0.50	0.65	0.50	4246778	0.20
Back Half Silver (Ag)	ug	0.13	<0.10	0.10	0.16	0.10	4246778	0.020
Back Half Zinc (Zn)	ug	4.2	3.8	2.5	11.9	2.5	4246778	0.60
RDL = Reportable Detection L	imit							

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Mostardi Platt

Client Project #: M154005 Site Location: ROCKFORD

EPA M29 METALS (FRONT & BACK SEPARATE)

Maxxam ID		BEC557	BEC558		BEC559	BEC560			
Sampling Date		2015/10/06	2015/10/06		2015/10/06	2015/10/06			
	UNITS	M5/29- BAGHOUSE SAND SEPARATOR-T2	M5/29- BAGHOUSE SAND SEPARATOR-T3	RDL	M5/29- BAGHOUSE GAS COOLER-T1	M5/29- BAGHOUSE GAS COOLER-T2	RDL	QC Batch	MDL
Front Half Antimony (Sb)	ug	219	137	2.0	150	49.2	2.0	4248555	0.080
Front Half Arsenic (As)	ug	11.8	7.3	2.0	18.1	53.4	2.0	4248555	0.080
Front Half Barium (Ba)	ug	109	73	15	· 57	<15	15	4248555	0.80
Front Half Beryllium (Be)	ug	<0.50	<0.50	0.50	<0.50	<0.50	0.50	4248555	0.040
Front Half Cadmium (Cd)	ug	9.03	7.59	0.50	1.17	1.32	0.50	4248555	0.040
Front Half Chromium (Cr)	ug	53.0	43.4	1.5	47.3	33.7	1.5	4248555	0.10
Front Half Cobalt (Co)	ug	39.8	24.2	0.50	44.6	20.7	0.50	4248555	0.020
Front Half Copper (Cu)	ug	17000	10100	40	1040	225	10	4248555	0.20
Front Half Lead (Pb)	ug	16300	10500	4.0	4270	807	1.0	4248555	0.040
Front Half Manganese (Mn)	ug	582	361	3.8	66.5	18.6	3.8	4248555	0.10
Front Half Nickel (Ni)	ug	229	176	2.5	466	468	2.5	4248555	0.20
Front Half Selenium (Se)	ug	<5.0	<5.0	5.0	<5.0	<5.0	5.0	4248555	0.50
Front Half Silver (Ag)	ug	8.0	9.6	1.0	<1.0	<1.0	1.0	4248555	0.040
Front Half Zinc (Zn)	ug	7740	4910	25	541	137	25	4248555	1.0
Back Half Antimony (Sb)	ug	0.35	<0.20	0.20	<0.20	<0.20	0.20	4246778	0.040
Back Half Arsenic (As)	ug	<0.20	<0.20	0.20	1.02	34.0	0.20	4246778	0.040
Back Half Barium (Ba)	ug	2.2	<1.5	1.5	3.1	1.7	1.5	4246778	0.040
Back Half Beryllium (Be)	ug	<0.050	<0.050	0.050	<0.050	<0.050	0.050	4246778	0.050
Back Half Cadmium (Cd)	ug	0.539	2.49	0.050	0.471	3.02	0.050	4246778	0.030
Back Half Chromium (Cr)	ug	1.00	0.94	0.15	0.87	1.60	0.15	4246778	0.070
Back Half Cobalt (Co)	ug	0.231	0.179	0.050	0.263	0.351	0.050	4246778	0.010
Back Half Copper (Cu)	ug	2.8	5.3	2.0	4.1	6.9	2.0	4246778	1.6
Back Half Lead (Pb)	ug	4.19	2.28	0.10	. 3.18	5.11	0.10	4246778	0.040
Back Half Manganese (Mn)	ug	1.21	1.01	0.25	1.13	1.29	0.25	4246778	0.060
Back Half Nickel (Ni)	ug	1.33	0.95	0.25	0.95	2.07	0.25	4246778	0.060
Back Half Selenium (Se)	ug	12.7	<0.50	0.50	0.72	<0.50	0.50	4246778	0.20
Back Half Silver (Ag)	ug	0.12	<0.10	0.10	0.10	<0.10	0.10	4246778	0.020
Back Half Zinc (Zn)	ug	22.4	3.1	2.5	6.9	21.3	2.5	4246778	0.60
RDL = Reportable Detection Li	mit					<u>-</u> -			

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Mostardi Platt

Client Project #: M154005 Site Location: ROCKFORD

EPA M29 METALS (FRONT & BACK SEPARATE)

Maxxam ID		8EC561	BEC562	BEC 5 65	BEC566	BEC567			
Sampling Date		2015/10/06	2015/10/07	2015/10/07	2015/10/07	2015/10/07			
	UNITS	M5/29- BAGHOUSE GAS COOLER-T3	M5/29-BLUE BAGHOUSE-T1	M5/29-BLUE BAGHOUSE-T2	M5/29-BLUE BAGHOUSE-T3	M5/29-BLUE BAGHOUSE-T4	RDL	QC Batch	MDL
Front Half Antimony (Sb)	ug	33.0	5.95	1.67	1.46	0.98	0.80	4248555	0.080
Front Half Arsenic (As)	ug	20.5	4.09	1.00	<0.80	<0.80	0.80	4248555	0.080
Front Half Barium (Ba)	ug	17.9	10.5	10.4	10.4	8.0	6.0	4248555	0.80
Front Half Beryllium (Be)	ug	<0.20	<0.20	<0.20	<0.20	<0.20	0.20	4248555	0.040
Front Half Cadmium (Cd)	ug	0.48	0.31	1.69	0.91	<0.20	0.20	4248555	0.040
Front Half Chromium (Cr)	ug	20.5	8.30	7.65	6.69	3.85	0.60	4248555	0.10
Front Half Cobalt (Co)	ug	10.9	4.28	2.17	2.12	1.33	0.20	4248555	0.020
Front Half Copper (Cu)	ug	150	263	158	155	81.9	4.0	4248555	0.20
Front Half Lead (Pb)	ug	531	234	55.8	41.2	33.9	0.40-	4248555	0.040
Front Half Manganese (Mn)	ug	12.9	22.8	10.6	10.8	6.8	1.5	4248555	0.10
Front Half Nickel (Ni)	ug	202	56.7	60.9	49.4	23.8	1.0	4248555	0.20
Front Half Selenium (Se)	ug	<2.0	<2.0	<2.0	<2.0	<2.0	2.0	4248555	0.50
Front Half Silver (Ag)	ug	<0.40	<0.40	0.42	0:83	1.24	0.40	4248555	0.040
Front Half Zinc (Zn)	ug	107	234	99	91	58	10	42485 55	1.0
Back Half Antimony (Sb)	ug	<0.20	0.31	<0.20	<0.20	<0.20	0.20	4246778	0.040
Back Half Arsenic (As)	ug	1.37	<0.20	<0.20	<0.20	<0.20	0.20	4246778	0.040
Back Half Barium (Ba)	ug	3.0	1.7	1.6	<1.5	1.8	1.5	4246778	0.040
Back Half Beryllium (Be)	ug	<0.050	<0.050	<0.050	<0.050	<0.050	0.050	4246778	0.050
Back Half Cadmium (Cd)	ug	2.81	0.344	0.123	0.315	0.057	0.050	4246778	0.030
Back Half Chromium (Cr)	ug	1.16	1.23	1.43	1.02	2.31	0.15	4246778	0.070
Back Half Cobalt (Co)	ug	0.884	0.593	0.696	0.668	0.522	0.050	4246778	0.010
Back Half Copper (Cu)	ug	7.8	4.6	11.3	3.8	3.4	2.0	4246778	1.6
Back Half Lead (Pb)	ug	7.15	5.31	4.99	4.20	5.55	0.10	4246778	0.040
Back Half Manganese (Mn)	ug	1.13	1.59	1.36	1.09	1.44	0.25	4246778	0.060
Back Half Nickel (Ni)	ug	1.44	1.88	1.52	1.76	3.07	0.25	4246778	0.060
Back Half Selenium (Se)	ug	1.05	2.54	<0.50	0.91	<0.50	0.50	4246778	0.20
Back Half Silver (Ag)	ug	<0.10	0.49	<0.10	<0.10	<0.10	0.10	4246778	0.020
Back Half Zinc (Zn)	ug	3.6	8.8	4.0	4.6	<2.5	2.5	4246778	0.60

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Mostardi Platt

Client Project #: M154005 Site Location: ROCKFORD

EPA M29 METALS (FRONT & BACK SEPARATE)

Maxxam ID		BEC572	BEC573	BEC574		BEC575			
Sampling Date		2015/10/07	2015/10/07	2015/10/07		2015/10/07			
	UNITS	M5/29-BAGHO USE SWEECO-T1	M5/29-BAGHO USE SWEECO-T2	M5/29-BAGHO USE SWEECO-T3	RDL	M5/29-BAGHO USE SWEECO-T4	RDL	QC Batch	WDL
Front Half Antimony (Sb)	ug	6.8	8.1	6.5	2.0	8.0	4.0	4248555	0.080
Front Half Arsenic (As)	ug	<2.0	<2.0	<2.0	2.0	<4.0	4.0	4248555	0.080
Front Half Barium (Ba)	ug	63	. 33	41	15	36	30	4248555	0.80
Front Half Beryllium (Be)	ug	<0.50	<0.50	<0.50	0.50	<1.0	1.0	4248555	0.040
Front Half Cadmium (Cd)	ug	2.96	0.54	0.78	0.50	<1.0	1.0	4248555	0.040
Front Half Chromium (Cr)	ug	10.0	8.4	10.1	1.5	10.4	3.0	4248555	0.10
Front Half Cobalt (Co)	ug	4.28	6.86	6.57	0.50	5.6	1.0	4248555	0.020
Front Half Copper (Cu)	ug	604	2510	2340	10	2180	20	4248555	0.20
Front Half Lead (Pb)	ug	333	607	540	1.0	620	2.0	4248555	0.040
Front Half Manganese (Mn)	ug	29.5	51.1	81.7	3.8	69.1	7.5	4248555	0.10
Front Half Nickel (Ni)	ug	48.8	38.6	59.7	2.5	48.7	5.0	4248555	0.20
Front Half Selenium (Se)	ug	<5.0	<5.0	<5.0	5.0	<10	10	4248555	0.50
Front Half Silver (Ag)	ug	<1.0	1.9	4.1	1.0	7.2	2.0	4248555	0.040
Front Half Zinc (Zn)	ug	530	912	797	25	890	50	4248555	1.0
Back Half Antimony (Sb)	ug	0.31	<0.20	<0.20	0.20	<0.20	0.20	4246778	0.040
Back Half Arsenic (As)	ug	<0.20	<0.20	<0.20	0.20	<0.20	0.20	4246778	0.040
Back Half Barium (Ba)	ug	2.0	2.1	<1.5	1.5	<1.5	1.5	4246778	0.040
Back Half Beryllium (Be)	ug	<0.050	<0.050	<0.050	0.050	<0.050	0.050	4246778	0.050
Back Half Cadmium (Cd)	ug	0.444	0.255	0.120	0.050	0.332	0.050	4246778	0.030
Back Half Chromium (Cr)	ug	9.43	6.54	7.91	0.15	8.30	0.15	4246778	0.070
Back Half Cobalt (Co)	ug	0.878	0.660	0.339	0.050	1.11	0.050	4246778	0.010
Back Half Copper (Cu)	ug	10.0	19.7	6.0	2.0	18.1	2.0	4246778	1.6
Back Half Lead (Pb)	ug	7.35	7.12	3.90	0.10	8.41	0.10	4246778	0.040
Back Half Manganese (Mn)	ug	3.05	2.42	1.49	0.25	1.80	0.25	4246778	0.060
Back Half Nickel (Ni)	ug	16.5	8.34	5.51	0.25	5.12	0.25	4246778	0.060
Back Half Selenium (Se)	ug	<0.50	<0.50	<0.50	0.50	<0.50	0.50	4246778	0.20
Back Half Silver (Ag)	ug	0.24	0.11	0.16	0.10	<0.10	0.10	4246778	0.020
Back Half Zinc (Zn)	ug	11.9	12.4	3.4	2.5	6.6	2.5	4246778	0.60

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Mostardi Platt

Client Project #: M154005 Site Location: ROCKFORD

EPA M29 METALS (FRONT & BACK SEPARATE)

Maxxam ID		BEC576	BEC577		BEC578	BEC578			
Sampling Date		2015/10/07	2015/10/07		2015/10/07	2015/10/07		_	
	UNITS	M5/29-BAGHO USE INLET-T1	M5/29-BAGHO USE INLET-T2	QC Batch	M5/29-BAGHO USE INLET-T3	M5/29- BAGHOUSE INLET-T3 Lab-Dup	RDL	QC Batch	MDL
Front Half Antimony (Sb)	ug	72.3	9.9	4248555	107	107	2.0	4248561	0.080
Front Half Arsenic (As)	ug	17.6	7.5	4248555	8.1	8.0	2.0	4248561	0.080
Front Half Barium (Ba)	ug	<15	<15	42485 55	17	17	15	4248561	0.80
Front Half Beryllium (Be)	ug	<0.50	<0.50	4248555	<0.50	<0.50	0.50	4248561	0.040
Front Half Cadmium (Cd)	ug	1.61	1.17	4248555	2.91	3.05	0.50	4248561	0.040
Front Half Chromium (Cr)	ug	9.2	4.5	4248555	4.7	4.9	1.5	4248561	0.10
Front Half Cobalt (Co)	ug	3.30	1.08	4248555	2.25	2.19	0.50	4248561	0.020
Front Half Copper (Cu)	ug	215	• 77	4248555	173	174	10	4248561	0.20
Front Half Lead (Pb)	ug	1780	769	4248555	1480	1480	1.0	4248561	0.040
Front Half Manganese (Mn)	ug	12.3	5.2	4248555	7.2	7.2	3.8	4248561	0.10
Front Half Nickel (Ni)	ug	31.7	11.8	4248555	17.7	18.1	2.5	4248561	0.20
Front Half Selenium (Se)	ug	<5.0	<5.0	4248555	<5.0	<5.0	5.0	4248561	0.50
Front Half Silver (Ag)	ug	<1.0	<1.0	4248555	<1.0	<1.0	1.0	4248561	0.040
Front Half Zinc (Zn)	ug	174	58	4248555	99	98	25	4248561	1.0
Back Half Antimony (Sb)	ug	<0.20	0.21	4246778	3.35	3.30	0.20	4246784	0.040
Back Half Arsenic (As)	ug	1.69	0.29	4246778	1.08	1.08	0.20	4246784	0.040
Back Half Barium (Ba)	ug	1.7	3.3	4246778	1.9	1.8	1.5	4246784	0.040
Back Half Beryllium (Be)	ug	<0.050	<0.050	4246778	<0.050	<0.050	0.050	4246784	0.050
Back Half Cadmium (Cd)	ug	0.264	0.260	4246778	0.135	0.123	0.050	4246784	0.030
Back Half Chromium (Cr)	ug	20.9	62.3	4246778	16.1	16.0	0.15	4246784	0.070
Back Half Cobalt (Co)	ug	0.642	1.34	4246778	0.585	0.581	0.050	4246784	0.010
Back Half Copper (Cu)	ug	17.6	18.2	4246778	6.9	6.7	2.0	4246784	1.6
Back Haif Lead (Pb)	ug	10.9	13.8	4246778	6.21	6.21	0.10	4246784	0.040
Back Half Manganese (Mn)	ug	1.99	2.10	4246778	2.10	2.06	0.25	4246784	0.060
Back Half Nickel (Ni)	ug	12.9	16.4	4246778	6.66	6.51	0.25	4246784	0.060
Back Half Selenium (Se)	ug	0.55	0.71	4246778	0.53	0.53	0.50	4246784	0.20
Back Half Silver (Ag)	ug	0.11	1.15	4246778	0.24	0.24	0.10	4246784	0.020
Back Half Zinc (Zn)	ug	17.2	10.9	4246778	6.2	5.6	2.5	4246784	0.60

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Mostardi Platt

Client Project #: M154005 Site Location: ROCKFORD

EPA M29 METALS (FRONT & BACK SEPARATE)

Maxxam ID		BEC579		BEC580	BEC581		BEC582			
Sampling Date		2015/10/07		2015/10/07	2015/10/07		2015/10/07			
	UNITS	M5/29-BAGHO USE INLET-T4	RDL	M5/29-TPU BAGHOUSE INLET-T1	M5/29-TPU BAGHOUSE INLET-T2	RDL	M5/29-TPU BAGHOUSE INLET-T3	RDL	QC Batch	MDL
Front Half Antimony (Sb)	ug	8.4	2.0	30	39	20	<20	20	4248561	0.080
Front Half Arsenic (As)	ug	4.3	2.0	<20	<20	20	<20	20	4248561	0.080
Front Half Barium (Ba)	ug	<15	15	<150	<150	150	<150	150	4248561	0.80
Front Half Beryllium (Be)	ug	<0.50	0.50	<5.0	<5.0	5.0	<5.0	5.0	4248561	0.040
Front Half Cadmium (Cd)	ug	<0.50	0.50	6 .5	<5.0	5.0	<5.0	5.0	4248561	0.040
Front Half Chromium (Cr)	ug	3.2	1.5	4370	2840	15	1710	15	4248561	0.10
Front Half Cobalt (Co)	ug	0.66	0.50	737	1450	5.0	897	5.0	4248561	0.020
Front Half Copper (Cu)	ug	7 7	10	66300	149000	100	481000 (1)	500	4248561	0.20
Front Half Lead (Pb)	ug	1660	1.0	2930	1850	10	.1860	10	4248561	0.040
Front Half Manganese (Mn)	ug	<3.8	3.8	8860	3590	38	635	38	4248561	0.10
Front Half Nickel (Ni)	ug	10.1	2.5	46600	29900	25	21300	25	4248561	0.20
Front Half Selenium (Se)	ug	<5.0	5.0	<50	<50	50	<50	50	4248561	0.50
Front Half Silver (Ag)	ug	<1.0	1.0	<10	<10	10	18	10	4248561	0.040
Front Half Zinc (Zn)	ug	51	25	103000	29200	250	4380	250	4248561	1.0
Back Half Antimony (Sb)	ug	0.37	0.20	5.38	1.75	0.20	7.16	0.20	4246784	0.040
Back Half Arsenic (As)	ug	0.26	0.20	0.26	<0.20	0.20	0.36	0.20	4246784	0.040
Back Half Barium (Ba)	ug	3.3	1.5	<1.5	<1.5	1.5	3.8	1.5	4246784	0.040
Back Half Beryllium (Be)	ug	<0.050	0.050	<0.050	<0.050	0.050	<0.050	0.050	4246784	0.050
Back Half Cadmium (Cd)	ug	0.236	0.050	0.173	0.080	0.050	0.105	0.050	4246784	0.030
Back Half Chromium (Cr)	ug	7.76	0.15	1.68	1.35	0.15	2.23	0.15	4246784	0.070
Back Half Cobalt (Co)	ug	0.683	0.050	3.23	1.58	0.050	9.46	0.050	4246784	0.010
Back Half Copper (Cu)	ug	7.2	2.0	16.3	8.1	2.0	28.1	2.0	4246784	1.6
Back Half Lead (Pb)	ug	7.71	0.10	293	82.4	0.10	537	0.10	4246784	0.040
Back Half Manganese (Mn)	ug	2.03	0.25	1.22	1.25	0.25	3.46	0.25	4246784	0.060
Back Half Nickel (Ni)	ug	4.28	0.25	4.93	8.61	0.25	7.98	0.25	4246784	0.060
Back Half Selenium (Se)	ug	<0.50	0.50	8.92	52.5	0.50	1.20	0.50	4246784	0.20
Back Half Silver (Ag)	ug	0.16	0.10	<0.10	<0.10	0.10	<0.10	0.10	4246784	0.020
Back Half Zinc (Zn)	ug	4.2	2.5	17.7	19.5	2.5	11.8	2.5	4246784	0.60

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

(1) Extra 250x dilution reported

Mostardi Platt

Client Project #: M154005 Site Location: ROCKFORD

ELEMENTS BY ICP/MS (STACK SAMPLING TRAIN)

Maxxam ID	L	BEC632	BEC640			
Sampling Date						
	UNITS	AUDIT-0929150-1425	AUDIT-0929150-1426	RDL	QC Batch	MDL
Total Antimony (Sb)	ug/mL	N/A	1.78	0.010	4247327	N/A
Total Arsenic (As)	ug/mL	N/A	0.902	0.010	4247327	N/A
Total Barium (Ba)	ug/mL	N/A	1.10	0.060	4247327	N/A
Total Beryllium (Be)	ug/mL	N/A	1.45	0.0020	4247327	N/A
Total Cadmium (Cd)	ug/mL	N/A	1.17	0.0020	4247327	N/A
Total Chromium (Cr)	ug/mL	N/A	2.51	0.0050	4247327	N/A
Total Cobalt (Co)	ug/mL	N/A	1.96	0.0020	4247327	N/A
Total Copper (Cu)	ug/mL	N/A	1.29	0.010	4247327	N/A
Total Lead (Pb)	ug/mL	N/A	0.719	0.0050	4247327	N/A
Total Manganese (Mn)	ug/mL	N/A	0.343	0.010	4247327	N/A
Total Nickel (Ni)	ug/mL	N/A	0.372	0.010	4247327	N/A
Total Selenium (Se)	ug/mL	N/A	1.81	0.020	4247327	N/A
Total Silver (Ag)	ug/mL	N/A	0.878	0.0050	4247327	N/A
Total Zinc (Zn)	ug/mL	N/A	1.74	0.050	4247327	N/A
Front Half Antimony (Sb)	ug	32.2	N/A	0.40	4248561	0.080
Front Half Arsenic (As)	ug	26.4	N/A	0.40	4248561	0.080
Front Half Barium (Ba)	ug	31.4	N/A	3.0	4248561	0.80
Front Half Beryllium (Be)	ug	12.5	N/A	0.10	4248561	0.040
Front Half Cadmium (Cd)	ug	13.2	N/A	0.10	4248561	0.040
ront Half Chromium (Cr)	ug	21.0	N/A	0.30	4248561	0.10
ront Half Cobalt (Co)	ug	14.6	N/A	0.10	4248561	0.020
ront Half Copper (Cu)	ug	14.2	N/A	2.0	4248561	0.20
ront Half Lead (Pb)	ug	27.4	N/A	0.20	4248561	0.040
ront Half Manganese (Mn)	ug	14.5	N/A	0.75	4248561	0.10
ront Half Nickel (Ni)	ug	27.1	N/A	0.50	4248561	0.20
ront Half Selenium (Se)	ug	26.9	N/A	1.0	4248561	0.50
ront Half Silver (Ag)	ug	40.8	N/A	0.20	4248561	0.040
ront Half Zinc (Zn)	ug	29.0	N/A	5.0	4248561	1.0

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Mostardi Platt

Client Project #: M154005 Site Location: ROCKFORD

TEST SUMMARY

Maxxam ID: BEC523 Sample ID: M5/29-BLANK

Matrix: Stack Sampling Train

Collected: Shipped:

Collected:

Received: 2015/10/16

2015/10/06

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals B.H. in H2O2/HNO3 [mp (6020A)	ICP1/MS	4246778	2015/10/27	2015/10/27	Nan Raykha
Metals F.H. in Filter + Rinses (6020A)	ICP1/MS	4248555	2015/10/28	2015/10/28	Nan Raykha

Maxxam ID: BEC552

M5/29-NW BAGHOUSE-T1 Sample ID:

Matrix: Stack Sampling Train

Shipped:

Received: 2015/10/16

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals B.H. in H2O2/HNO3 Imp.(6020A)	ICP1/MS	4246778	2015/10/27	2015/10/27	Nan Raykha
Metals F.H. in Filter + Rinses (6020A)	ICP1/MS	4248555	2015/10/28	2015/10/28	Nan Raykha

Maxxam ID: BEC552 Dup

M5/29-NW BAGHOUSE-T1 Sample ID:

Collected: 2015/10/06 Shipped:

Matrix: Stack Sampling Train Received: 2015/10/16

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals B.H. in H2O2/HNO3 Imp.(6020A)	JCP1/MS	4246778	2015/10/27	2015/10/27	Nan Raykha
Metals F.H. in Filter + Rinses (6020A)	ICP1/MS	4248555	2015/10/29	2015/10/28	Nan Raykha

Maxxam ID: BEC553

Sample ID: M5/29-NW BAGHOUSE-T2

Matrix: Stack Sampling Train Collected: 2015/10/06

Shipped:

2015/10/16 Received:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals B.H. in H2O2/HNO3 Imp.(6020A)	ICP1/MS	4246778	2015/10/27	2015/10/27	Nan Raykha
Metals F.H. in Filter + Rinses (6020A)	ICP1/MS	4248555	2015/10/28	2015/10/28	Nan Raykha

Maxxam ID: BEC555

M5/29-NW BAGHOUSE-T3 Sample ID: Matrix: Stack Sampling Train

Collected: 2015/10/06 Shipped:

Received: 2015/10/16

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals B.H. in H2O2/HNO3 Imp.(6020A)	ICP1/MS	4246778	2015/10/27	2015/10/27	Nan Raykha
Metals F.H. in Filter + Rinses (6020A)	ICP1/MS	4248555	2015/10/28	2015/10/28	Nan Raykha

Maxxam ID: BEC556

Rotary Dryer Discharge

M5/29-BAGHOUSE SAND SEPARATOR-T1 Sample ID:

Matrix: Stack Sampling Train

Collected: 2015/10/06

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Metals B.H. in H2O2/HNO3 Imp.(6020A)	ICP1/MS	4246778	2015/10/27	2015/10/27	Nan Raykha	
Metals F.H. in Filter + Rinses (6020A)	ICP1/MS	4248555	2015/10/28	2015/10/28	Nan Raykha	

Mostardi Platt

Client Project #: M154005 Site Location: ROCKFORD

TEST SUMMARY

Maxxam ID: BEC557

M5/29-BAGHOUSE SAND SEPARATOR-T2

Sample ID:

Matrix: Stack Sampling Train

Collected: 2015/10/06

Shipped:

Received: 2015/10/16

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals B.H. in H2O2/HNO3 Imp.(6020A)	(CP1/MS	4246778	2015/10/27	2015/10/27	Nan Raykha
Metals F.H. in Filter + Rinses (6020A)	ICP1/MS	4248555	2015/10/28	2015/10/28	Nan Raykha

Maxxam ID: BEC558

Sample ID: M5/29-BAGHOUSE SAND SEPARATOR-T3

Matrix: Stack Sampling Train

Collected:

2015/10/06

Shipped:

Received: 2015/10/16

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	77
Metals B.H. in H2O2/HNO3 Imp.(6020A)	ICP1/MS	4246778	2015/10/27	2015/10/27	Nan Raykha	
Metals F.H. in Filter + Rinses (6020A)	ICP1/MS	4248555	2015/10/28	2015/10/28	Nan Raykha	

Maxxam ID: BEC559

M5/29-BAGHOUSE GAS COOLER-T1 Sample ID: Matrix: Stack Sampling Train

Collected: Shipped:

2015/10/06

Received: 2015/10/16

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals B.H. in H2O2/HNO3 Imp.(6020A)	ICP1/MS	4246778	2015/10/27	2015/10/27	Nan Raykha
Metals F.H. in Filter + Rinses (6020A)	ICP1/MS	4248555	2015/10/28	2015/10/28	Nan Raykha

Maxxam ID: BEC560

Sample ID: M5/29-BAGHOUSE GAS COOLER-T2

Matrix: Stack Sampling Train

Collected: 2015/10/06

Shipped:

Received: 2015/10/16

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals B.H. in H2O2/HNO3 Imp.(6020A)	ICP1/MS	4246778	2015/10/27	2015/10/27	Nan Raykha
Metals F.H. in Filter + Rinses (6020A)	ICP1/MS	4248555	2015/10/28	2015/10/28	Nan Raykha

Maxxam ID: BEC561

M5/29-BAGHOUSE GAS COOLER-T3 Sample ID:

Matrix: Stack Sampling Train

Collected: 2015/10/06

Shipped: Received: 2015/10/16

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals B.H. in H2O2/HNO3 Imp.(6020A)	ICP1/MS	4246778	2015/10/27	2015/10/27	Nan Raykha
Metals F.H. in Filter + Rinses (6020A)	ICP1/MS	4248555	2015/10/28	2015/10/28	Nan Raykha

Maxxam ID: BEC562

Sample ID: M5/29-BLUE BAGHOUSE-T1 Matrix: Stack Sampling Train

Collected: 2015/10/07

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals B.H. in H2O2/HNO3 Imp.(6020A)	ICP1/MS	4246778	2015/10/27	2015/10/27	Nan Raykha
Metals F.H. in Filter + Rinses (6020A)	ICP1/MS	4248555	2015/10/28	2015/10/28	Nan Raykha

Mostardi Platt

Client Project #: M154005 Site Location: ROCKFORD

TEST SUMMARY

Maxxam ID: BEC565

Sample ID: M5/29-BLUE BAGHOUSE-T2

Matrix: Stack Sampling Train

Collected:

2015/10/07

Shipped:

Received: 2015/10/16

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals B.H. in H2O2/HNO3 Imp.(6020A)	ICP1/MS	4246778	2015/10/27	2015/10/27	Nan Raykha
Metals F.H. in Filter + Rinses (6020A)	ICP1/MS	4248555	2015/10/28	2015/10/28	Nan Raykha

Maxxam ID: BEC566

Sample ID: M5/29-BLUE BAGHOUSE-T3

Matrix: Stack Sampling Train Collected: 2015/10/07

Shipped:

Received: 2015/10/16

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals B.H. in H2O2/HNO3 Imp.(6020A)	ICP1/MS	4246778	2015/10/27	2015/10/27	Nan Raykha
Metals F.H. in Filter + Rinses (6020A)	ICP1/MS	4248555	2015/10/28	2015/10/28	Nan Raykha

Maxxam ID: BEC567

M5/29-BLUE BAGHOUSE-T4 Sample ID:

Matrix: Stack Sampling Train

Collected: 2015/10/07

Shipped:

Received: 2015/10/16

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals B.H. in H2O2/HNO3 Imp.(6020A)	ICP1/MS	4246778	2015/10/27	2015/10/27	Nan Raykha
Metals F.H. in Fifter + Rinses (6020A)	ICP1/MS	4248555	2015/10/28	2015/10/28	Nan Raykha

Maxxam ID: BEC572

M5/29-BAGHOUSE SWEECO-T1 Sample ID:

Matrix: Stack Sampling Train

Collected: 2015/10/07

Shipped:

Received: 2015/10/16

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Metals B.H. in H2O2/HNO3 Imp.(6020A)	ICP1/MS	4246778	2015/10/27	2015/10/27	Nan Raykha	
Metals F.H. in Filter + Rinses (6020A)	ICP1/MS	4248555	2015/10/28	2015/10/28	Nan Raykha	

Maxxam ID: BEC573

M5/29-BAGHOUSE SWEECO-T2 Sample ID:

Matrix: Stack Sampling Train

Collected: 2015/10/07

Shipped:

Received: 2015/10/16

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals B.H. in H2O2/HNO3 Imp.(6020A)	ICP1/MS	4246778	2015/10/27	2015/10/27	Nan Raykha
Metals F.H. in Filter + Rinses (6020A)	ICP1/MS	4248555	2015/10/28	2015/10/28	Nan Raykha

Maxxam ID: BEC574

M5/29-BAGHOUSE SWEECO-T3 Sample ID:

Matrix: Stack Sampling Train

Collected: 2015/10/07

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals B.H. in H2O2/HNO3 Imp.(6020A)	ICP1/M5	4246778	2015/10/27	2015/10/27	Nan Raykha
Metals F.H. in Filter + Rinses (6020A)	ICP1/MS	4248555	2015/10/28	2015/10/28	Nan Raykha

Mostardi Platt

Client Project #: M154005 Site Location: ROCKFORD

TEST SUMMARY

Maxxam ID: BEC575

Sample ID: M5/29-BAGHOUSE SWEECO-T4

Matrix: Stack Sampling Train

Collected: 2015/10/07

Shipped:

Received: 2015/10/16

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals B.H. in H2O2/HNO3 Imp.(6020A)	ICP1/MS	4246778	2015/10/27	2015/10/27	Nan Raykha
Metals F.H. in Filter + Rinses (6020A)	ICP1/MS	4248555	2015/10/28	2015/10/28	Nan Raykha

Maxxam ID: BEC576

Sample ID: M5/29-BAGHOUSE INLET-T1

Matrix: Stack Sampling Train

Collected: 2015/10/07

Shipped:

Received: 2015/10/16

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals B.H. in H2O2/HNO3 Imp.(6020A)	ICP1/M5	4246778	2015/10/27	2015/10/27	Nan Raykha
Metals F.H. in Filter + Rinses (6020A)	ICP1/MS	4248555	2015/10/28	2015/10/28	Nan Raykha

Maxxam ID: BEC577

M5/29-BAGHOUSE INLET-T2 Sample ID:

Matrix: Stack Sampling Train

Collected: 2015/10/07

Shipped:

Received: 2015/10/16

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals B.H. in H2O2/HNO3 Imp.(6020A)	ICP1/MS	4246778	2015/10/27	2015/10/27	Nan Raykha
Metals F.H. in Filter + Rinses (6020A)	ICP1/MS	4248555	2015/10/28	2015/10/28	Nan Raykha

Maxxam ID: BEC578

Sample ID: M5/29-BAGHOUSE INLET-T3

Matrix: Stack Sampling Train

Collected: 2015/10/07 Shipped:

Received: 2015/10/16

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals B.H. in H2O2/HNO3 Imp (6020A)	ICP1/MS	4246784	2015/10/27	2015/10/27	Nan Raykha
Metals F.H. in Filter + Rinses (6020A)	ICP1/MS	4248561	2015/10/28	2015/10/28	Nan Raykha

Maxxam ID: BEC578 Dup

M5/29-BAGHOUSE INLET-T3 Sample ID:

Matrix: Stack Sampling Train

Collected: 2015/10/07

Shipped:

Received: 2015/10/16

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals B.H. in H2O2/HNO3 Imp.(6020A)	ICP1/MS	4246784	2015/10/27	2015/10/27	Nan Raykha
Metals F.H. in Filter + Rinses (6020A)	ICP1/MS	4248561	2015/10/28	2015/10/28	Nan Raykha

Maxxam ID: BEC579

M5/29-BAGHOUSE INLET-T4 Sample ID: Matrix: Stack Sampling Train

Collected: 2015/10/07 Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals B.H. in H2O2/HNO3 Imp.(6020A)	ICP1/MS	4246784	2015/10/27	2015/10/27	Nan Raykha
Metals F.H. in Filter + Rinses (6020A)	ICP1/MS	4248561	2015/10/28	2015/10/28	Nan Raykha

Mostardi Platt

Client Project #: M154005 Site Location: ROCKFORD

TEST SUMMARY

Maxxam ID: BEC580

Sample ID: M5/29-TPU BAGHOUSE INLET-T1

Matrix: Stack Sampling Train

Collected: 2015/10/07

Shipped:

Received: 2015/10/16

Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
ICP1/MS	4246784	2015/10/27	2015/10/27	Nan Raykha	
ICP1/MS	4248561	2015/10/28	2015/10/28	Nan Raykha	
	ICP1/MS	ICP1/MS 4246784	ICP1/MS 4246784 2015/10/27	ICP1/MS 4246784 2015/10/27 2015/10/27	ICP1/MS 4246784 2015/10/27 2015/10/27 Nan Raykha

Maxxam ID: BEC581

M5/29-TPU BAGHOUSE INLET-T2 Sample ID:

Matrix: Stack Sampling Train

Collected: 2015/10/07

Shipped:

Received: 2015/10/16

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Metals B.H. in H2O2/HNO3 Imp.(6020A)	ICP1/MS	4246784	2015/10/27	2015/10/27	Nan Raykha	
Metals F.H. in Filter + Rinses (6020A)	ICP1/MS	4248561	2015/10/28	2015/10/28	Nan Raykha	

Maxxam ID: BEC582

Sample ID: M5/29-TPU BAGHOUSE INLET-T3

Matrix: Stack Sampling Train

Collected: 2015/10/07

Shipped:

Received: 2015/10/16

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals B.H. in H2O2/HNO3 Imp.(6020A)	ICP1/MS	4246784	2015/10/27	2015/10/27	Nan Raykha
Metals F.H. in Filter + Rinses (6020A)	ICP1/MS	4248561	2015/10/28	2015/10/28	Nan Raykha

Maxxam ID: BEC632

Sample ID: AUDIT-0929150-1425

Matrix: Stack Sampling Train

Collected:

Shipped:

Received: 2015/10/16

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst	
Metals F.H. in Filter + Rinses (6020A)	ICP1/MS	4248561	2015/10/28	2015/10/28	Nan Raykha	

Maxxam ID: BEC640

Sample ID: AUDIT-0929150-1426

Matrix: Stack Sampling Train

Collected:

Shipped:

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Metals in Liquid by ICP/MS (6020A)	ICP1/MS	4247327	2015/10/27	2015/10/27	Nan Raykha

Mostardi Platt

Client Project #: M154005 Site Location: ROCKFORD

GENERAL COMMENTS

Sample BEC556-01: Extra 20x dilution was reported for Cu and Pb for this sample.

Sample BEC557-01: Extra 20x dilution was reported for Cu and Pb for this sample.

Sample BEC558-01 | Extra 20x dilution was reported for Cu and Pb for this sample.

EPA M29 METALS (FRONT & BACK SEPARATE)

Metals F.H. in Filter + Rinses (6020A): Extra 2x, 5x or 10x dilution was required for all samples except BEC523, due to the matrix and high levels. Post digestion duplicate and spike were done on sample BEC552.

Trace level Ba was observed in the Processed Blank.

Metals B.H. in H2O2/HNO3 Imp.(6020A): Post digestion duplicate and spike were done on sample BEC552.

Sample digests for BEC560, BEC575 and BEC577 were reanalyzed on 2015-10-28 to confirm data.

Metals F.H. in Filter + Rinses (6020A): Extra 5x or 50x dilution was required for all samples due to the matrix and high levels.

Post digestion duplicate and spike were done on sample BEC578.

Trace level Zn and Ba were observed in the Processed Blank.

Metals B.H. in H2O2/HNO3 Imp.(6020A): Post digestion duplicate and spike were done on sample BEC578.

Sample digests for BEC580 and BEC581 were reanalyzed on 2015-10-28 to confirm data.

ELEMENTS BY ICP/MS (STACK SAMPLING TRAIN)

Metals F.H. in Filter + Rinses (6020A): Extra 5x or 50x dilution was required for all samples due to the matrix and high levels.

Post digestion duplicate and spike were done on sample BEC578.

Trace level Zn and Ba were observed in the Processed Blank.

Results relate only to the items tested.

Mostardi Platt

Client Project #: M154005 Site Location: ROCKFORD

QUALITY ASSURANCE REPORT

QA/QC				Date		96		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNIT5	QC Limits
4246778	N_R	Matrix Spike(BEC552)	Back Half Antimony (Sb)	2015/10/27		96	%	70 - 130
	_		Back Half Arsenic (As)	2015/10/27		95	96	70 - 130
			Back Half Barium (Ba)	2015/10/27		99	%	70 - 130
			Back Half Beryllium (Be)	2015/10/27		97	%	70 - 130
			Back Half Cadmium (Cd)	2015/10/27		94	%	70 - 130
			Back Half Chromium (Cr)	2015/10/27		98	%	70 - 130
			Back Half Cobalt (Co)	2015/10/27		98	96	70 - 130
			Back Half Copper (Cu)	2015/10/27		97	%	70 - 130
			Back Half Lead (Pb)	2015/10/27		98	%	70 - 130
			Back Half Manganese (Mn)	2015/10/27		97	%	70 - 130
			Back Half Nickel (Ni)	2015/10/27		98	%	70 - 130
			Back Half Selenium (Se)	2015/10/27		90	%	70 - 130
			Back Half Silver (Ag)	2015/10/27		99	96	70 - 130
			Back Half Zinc (Zn)	2015/10/27		93	%	70 - 1 30
4246778	N R	Matrix Spike DUP(BEC552)	Back Half Antimony (Sb)	2015/10/27		96	%	70 - 130
12 101 10		,	Back Half Arsenic (As)	2015/10/27		94	%	70 - 130
			Back Half Barium (Ba)	2015/10/27		99	96	70 - 130
			Back Half Beryllium (Be)	2015/10/27		96	96	70 - 130
			Back Half Cadmium (Cd)	2015/10/27		95	%	70 - 130
			Back Half Chromium (Cr)	2015/10/27		99	96	70 - 130
			Back Half Cobalt (Co)	2015/10/27		100	%	70 - 130
			Back Half Copper (Cu)	2015/10/27		98	%	70 - 130
			Back Half Lead (Pb)	2015/10/27		97	%	70 - 130
			Back Half Manganese (Mn)	2015/10/27		98	%	70 - 130
			Back Half Nickel (Ni)	2015/10/27		99	%	70 - 130
			Back Half Selenium (Se)	2015/10/27		91	%	70 - 130
			Back Half Silver (Ag)	2015/10/27		100	%	70 - 130
			Back Half Zinc (Zn)	2015/10/27		92	%	70 - 130
1246778	N_R	MS/MSD RPD	Back Half Antimony (Sb)	2015/10/27	0		%	20
,240770	=	1013710135 1075	Back Half Arsenic (As)	2015/10/27	1.1		%	20
			Back Half Barium (Ba)	2015/10/27	0		%	20
			Back Half Beryllium (Be)	2015/10/27	1.0		96	20
			Back Half Cadmium (Cd)	2015/10/27	1.1		%	20
			Back Half Chromium (Cr)	2015/10/27	1.0		%	20
			Back Half Cobalt (Co)	2015/10/27	2.0		%	20
			Back Half Copper (Cu)	2015/10/27	1.0		%	20
			Back Half Lead (Pb)	2015/10/27	1.0		%	20
			Back Half Manganese (Mn)	2015/10/27	1.0		%	20
			Back Half Nickel (Ni)	2015/10/27	1.0		96	20
			Back Half Selenium (Se)	2015/10/27	1.1		96	20
			Back Half Silver (Ag)	2015/10/27	1.0		96	20
			Back Half Zinc (Zn)	2015/10/27	1.1		%	20
246770	N D	Spiked Blank	Back Half Antimony (Sb)	2015/10/27		100	%	85 - 11 5
246778	N_R	Spiked blank	Back Half Arsenic (As)	2015/10/27		98	%	85 - 115
			Back Half Barium (Ba)	2015/10/27		100	96	85 - 115
		Back Half Beryllium (Be)	2015/10/27		98	%	85 - 115	
			Back Half Cadmium (Cd)	2015/10/27		97	%	85 - 115
			Back Half Chromium (Cr)	2015/10/27		101	96	85 - 115
			Back Half Cobalt (Co)	2015/10/27		101	%	85 - 115
			Back Half Copper (Cu)	2015/10/27		102	%	85 - 115
						100	%	
			Back Half Lead (Pb)	2015/10/27				85 - 115 85 - 115
			Back Half Manganese (Mn) Back Half Nickel (Ni)	2015/10/27 2015/10/27		100 101	% %	85 - 115 85 - 115

Mostardi Platt

Client Project #: M154005 Site Location: ROCKFORD

QA/QC				Date		%		-
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Back Half Selenium (Se)	2015/10/27		94	%	85 - 115
			Back Half Silver (Ag)	2015/10/27		104	%	85 - 115
			Back Half Zinc (Zn)	2015/10/27		96	%	85 - 115
4246778	ΝR	Spiked Blank DUP	Back Half Antimony (Sb)	2015/10/27		101	%	85 - 115
	_		Back Half Arsenic (As)	2015/10/27		99	%	85 - 115
			Back Half Barium (Ba)	2015/10/27		102	%	85 - 115
			Back Half Beryllium (Be)	2015/10/27		98	%	85 - 11 5
			Back Half Cadmium (Cd)	2015/10/27		99	%	85 - 115
			Back Half Chromium (Cr)	2015/10/27		102	%	85 - 115
			Back Half Cobalt (Co)	2015/10/27		103	%	85 - 115
			Back Half Copper (Cu)	2015/10/27		101	%	85 - 115
			Back Half Lead (Pb)	2015/10/27		103	%	85 - 115
			Back Half Manganese (Mn)	2015/10/27		101	%	85 - 115
			Back Half Nickel (Ni)	2015/10/27		102	%	85 - 115
			Back Half Selenium (Se)	2015/10/27		93	%	85 - 115
			Back Half Silver (Ag)	2015/10/27		104	%	85 - 11 5
			Back Half Zinc (Zn)	2015/10/27		96	%	85 - 115
4246778	NR	RPD	Back Half Antimony (Sb)	2015/10/27	1.3		%	20
	_		Back Half Arsenic (As)	2015/10/27	0.91		%	20
			Back Half Barium (Ba)	2015/10/27	2.1		%	20
			Back Half Beryllium (Be)	2015/10/27	0.50		%	20
			Back Half Cadmium (Cd)	2015/10/27	1.6		%	20
			Back Half Chromium (Cr)	2015/10/27	1.0		%	20
			Back Half Cobalt (Co)	2015/10/27	0.97		%	20
			Back Half Copper (Cu)	2015/10/27	1.2		%	20
			Back Half Lead (Pb)	2015/10/27	2.6		%	20
			Back Half Manganese (Mn)	2015/10/27	1.2		%	20
			Back Half Nickel (Ni)	2015/10/27	1.4		%	20
			Back Half Selenium (Se)	2015/10/27	0.23		%	20
•			Back Half Silver (Ag)	2015/10/27	0.21		%	20
			Back Half Zinc (Zn)	2015/10/27	0.42		%	20
4246778	NR	Method Blank	Back Half Antimony (Sb)	2015/10/27	< 0.20		ug	
			Back Half Arsenic (As)	2015/10/27	< 0.20		ug	
			Back Half Barium (Ba)	2015/10/27	<1.5		ug	
			Back Half Beryllium (Be)	2015/10/27	< 0.050		ug	
			Back Half Cadmium (Cd)	2015/10/27	< 0.050		ug	
			Back Half Chromium (Cr)	2015/10/27	< 0.15		ug	
			Back Half Cobalt (Co)	2015/10/27	< 0.050		ug	
			Back Half Copper (Cu)	2015/10/27	<2.0		ug	
			Back Half Lead (Pb)	2015/10/27	<0.10		ug	
			Back Half Manganese (Mn)	2015/10/27	<0.25		ug	
			Back Half Nickel (Ni)	2015/10/27	<0.25		ug	
			Back Half Selenium (Se)	2015/10/27	< 0.50		ug	
			Back Half Silver (Ag)	2015/10/27	<0.10		ug	
			Back Half Zinc (Zn)	2015/10/27	<2.5		ug	
4246778	N R	RPD - Sample/Sample Dup		2015/10/27	NC		%	20
TETU! / U	,	in a sumple sumple sup	Back Half Arsenic (As)	2015/10/27	NC		%	20
			Back Half Barium (Ba)	2015/10/27	NC		%	20
			Back Half Beryllium (Be)	2015/10/27	NC		%	20
			Back Half Cadmium (Cd)	2015/10/27	0.54		%	20
			Back Half Chromium (Cr)	2015/10/27	0		%	20
			Back Half Cobalt (Co)	2015/10/27	0.55		%	20
			Back Half Copper (Cu)	2015/10/27	NC		%	20

Mostardi Platt

Client Project #: M154005 Site Location: ROCKFORD

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Back Half Lead (Pb)	2015/10/27	1.5		%	20
			Back Half Manganese (Mn)	2015/10/27	NC		%	20
			Back Half Nickel (Ni)	2015/10/27	NC		% .	20
			Back Half Selenium (Se)	2015/10/27	NC		%	20
			Back Half Silver (Ag)	2015/10/27	NC		%	20
			Back Half Zinc (Zn)	2015/10/27	NC		%	20
4246784	N R	Matrix Spike(BEC578)	Back Half Antimony (Sb)	2015/10/27		94	%	70 - 130
(= .0,0.	-	,	Back Half Arsenic (As)	2015/10/27		90	%	70 - 130
			Back Half Barium (Ba)	2015/10/27		98	%	70 - 130
			Back Half Beryllium (Be)	2015/10/27		90	%	70 - 130
			Back Half Cadmium (Cd)	2015/10/27		91	%	70 - 130
			Back Half Chromium (Cr)	2015/10/27		97	%	70 - 130
			Back Half Cobalt (Co)	2015/10/27		98	%	70 - 130
			Back Half Copper (Cu)	2015/10/27		96	%	70 - 130
			Back Half Lead (Pb)	2015/10/27		96	%	70 - 130
			Back Half Manganese (Mn)	2015/10/27		95	%	70 - 130
			Back Half Nickel (Ni)	2015/10/27		97	%	70 - 130
			Back Half Selenium (Se)	2015/10/27		84	%	70 - 130
			Back Half Silver (Ag)	2015/10/27		97	%	70 - 130
			Back Half Zinc (Zn)	2015/10/27		86	%	70 - 130
4246784	N D	Matrix Spike DUP(BEC578)		2015/10/27		94	%	70 - 130
4240704	IA_IZ	Matrix spike Dor (Dees/o)	Back Half Arsenic (As)	2015/10/27		92	%	70 - 130
			Back Half Barium (Ba)	2015/10/27		99	%	70 - 130
			Back Half Beryllium (Be)	2015/10/27		90	%	70 - 130
			Back Half Cadmium (Cd)	2015/10/27		92	%	70 - 130
			Back Half Chromium (Cr)	2015/10/27		99	%	70 - 130
			Back Half Cobalt (Co)	2015/10/27		100	%	70 - 130
			Back Half Copper (Cu)	2015/10/27		98	%	70 - 130
			Back Half Lead (Pb)	2015/10/27		96	%	70 - 130
			Back Half Manganese (Mn)	2015/10/27		97	%	70 - 130
			Back Half Nickel (Ni)	2015/10/27		99	%	70 - 130
			Back Half Selenium (Se)	2015/10/27		86	%	70 - 130
			• •	2015/10/27		97	%	70 - 130
			Back Half Silver (Ag)	2015/10/27		86	%	70 - 130
		1 45 /2 45 D DDD	Back Half Zinc (Zn)	2015/10/27	0	80	%	20
4246784	N_R	MS/MSD RPD	Back Half Antimony (Sb)	2015/10/27	2.2		% %	20
			Back Half Arsenic (As)				% %	
			Back Half Barium (Ba)	2015/10/27	1.0 0		%	20
			Back Half Beryllium (Be)	2015/10/27			% %	20
			Back Half Cadmium (Cd)	2015/10/27	1.1			20
			Back Half Chromium (Cr)	2015/10/27	2.0		%	20
			Back Half Cobalt (Co)	2015/10/27	2.0		%	20
			Back Half Copper (Cu)	2015/10/27	2.1		%	20
			Back Half Lead (Pb)	2015/10/27	0		%	20
			Back Half Manganese (Mn)	2015/10/27	2.1		%	20
			Back Half Nickel (Ni)	2015/10/27	2.0		%	20
			Back Half Selenium (Se)	2015/10/27	2.4		%	20
			Back Half Silver (Ag)	2015/10/27	0		%	20
			Back Half Zinc (Zn)	2015/10/27	0		%	20
4246784	N_R	Spiked Blank	Back Half Antimony (Sb)	2015/10/27		98	%	85 - 115
			Back Half Arsenic (As)	2015/10/27		97	%	85 - 115
			Back Half Barium (Ba)	2015/10/27		100	%	85 - 115
			Back Half Beryllium (Be)	2015/10/27		97	%	85 - 115
			Back Half Cadmium (Cd)	2015/10/27		96	%	85 - 115

Mostardi Platt

Client Project #: M154005 Site Location: ROCKFORD

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Back Half Chromium (Cr)	2015/10/27		100	%	85 - 115
			Back Half Cobalt (Co)	2015/10/27		102	%	85 - 115
			Back Half Copper (Cu)	2015/10/27		100	%	85 - 115
			Back Half Lead (Pb)	2015/10/27		99	%	85 - 115
			Back Half Manganese (Mn)	2015/10/27		98	%	85 - 115
			Back Half Nickel (Ni)	2015/10/27		100	%	85 - 115
			Back Half Selenium (Se)	2015/10/27		92	%	85 - 115
			Back Half Silver (Ag)	2015/10/27		103	%	85 - 115
			Back Half Zinc (Zn)	2015/10/27		94	%	85 - 115
4246784	N-R	Spiked Blank DUP	Back Half Antimony (Sb)	2015/10/27		99	%	85 - 115
1210701		ppined bloim 2 b	Back Half Arsenic (As)	2015/10/27		99	%	85 - 11 5
			Back Half Barium (Ba)	2015/10/27		100	%	85 - 115
			Back Half Beryllium (Be)	2015/10/27		99	%	85 - 115
			Back Half Cadmium (Cd)	2015/10/27		98	%	85 - 115
			Back Half Chromium (Cr)	2015/10/27		101	%	85 - 115
			Back Half Cobalt (Co)	2015/10/27		103	%	85 - 115
			Back Half Copper (Cu)	2015/10/27		101	%	85 - 115
			Back Half Lead (Pb)	2015/10/27		102	%	85 - 115
			Back Half Manganese (Mn)	2015/10/27		100	%	85 - 115
			Back Half Nickel (Ni)	2015/10/27		102	%	85 - 115
			Back Half Selenium (Se)	2015/10/27		94	%	85 - 115
			Back Half Silver (Ag)	2015/10/27		102	%	85 - 115 85 - 115
			Back Half Zinc (Zn)	2015/10/27		96	%	85 - 115
4246784	N D	RPD	Back Half Antimony (Sb)	2015/10/27	0.89	50	%	20
4240704	1471	NF D	Back Half Arsenic (As)	2015/10/27	1.6		%	20
			Back Half Barium (Ba)	2015/10/27	0.74		%	20
			Back Half Beryllium (Be)	2015/10/27	2.1		%	20
			Back Half Cadmium (Cd)	2015/10/27	2.2		%	
			Back Half Chromium (Cr)	2015/10/27	1.2		%	20 20
			Back Half Cobalt (Co)	2015/10/27	1.2		%	
			Back Half Copper (Cu)	2015/10/27	1.1		%	20
			Back Half Lead (Pb)		3.5			20
			· · · · · · · · · · · · · · · · · · ·	2015/10/27			%	20
			Back Half Manganese (Mn)	2015/10/27	2.1		%	20
			Back Half Nickel (Ni)	2015/10/27	1.9		%	20
			Back Half Selenium (Se)	2015/10/27	2.4		%	20
			Back Half Silver (Ag)	2015/10/27	1.2		%	20
1246704		** (L. LDL L	Back Half Zinc (Zn)	2015/10/27	1.6		%	20
4246784	N_R	Method Blank	Back Half Antimony (Sb)	2015/10/27	<0.20		ug	
			Back Half Arsenic (As)	2015/10/27	<0.20		ug	
			Back Half Barium (Ba)	2015/10/27	<1.5		ug	
			Back Half Beryllium (Be)	2015/10/27	<0.050		ug	
			Back Half Cadmium (Cd)	2015/10/27	<0.050		ug	
			Back Half Chromium (Cr)	2015/10/27	<0.15		ug	
			Back Half Cobalt (Co)	2015/10/27	<0.050		ug	
			Back Half Copper (Cu)	2015/10/27	<2.0		ug	
			Back Half Lead (Pb)	2015/10/27	<0.10		ug	
			Back Half Manganese (Mn)	2015/10/27	<0.25		ug	
			Back Half Nickel (Ni)	2015/10/27	<0.25		ug	
			Back Half Selenium (Se)	2015/10/27	<0.50		ug	
			Back Half Silver (Ag)	2015/10/27	<0.10		ug	
			Back Half Zinc (Zn)	2015/10/27	<2.5		иg	
1246784	N_R	RPD - Sample/Sample Dup		2015/10/27	1.4		%	20
			Back Half Arsenic (As)	2015/10/27	0.56		%	20

Mostardi Platt

Client Project #: M154005 Site Location: ROCKFORD

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyz <u>e</u> d	Value	Recovery	UNITS	QC Limits
			Back Half Barium (Ba)	2015/10/27	NC		%	20
			Back Half Beryllium (Be)	2015/10/27	NC		%	20
			Back Half Cadmium (Cd)	2015/10/27	NC		%	20
			Back Half Chromium (Cr)	2015/10/27	0.78		%	20
			Back Half Cobalt (Co)	2015/10/27	0.77		%	20
			Back Half Copper (Cu)	2015/10/27	NC		%	20
			Back Half Lead (Pb)	2015/10/27	0.12		%	20
			Back Half Manganese (Mn)	2015/10/27	1.7		%	20
			Back Half Nickel (Ni)	2015/10/27	2.4		%	20
			Back Half Selenium (Se)	2015/10/27	NC		%	20
			Back Half Silver (Ag)	2015/10/27	NC		%	20
			Back Half Zinc (Zn)	2015/10/27	NC		%	20
4247327	NR	Spiked Blank	Total Antimony (Sb)	2015/10/27		98	%	85 - 115
,			Total Arsenic (As)	2015/10/27		97	%	85 - 115
			Total Barium (Ba)	2015/10/27		100	%	85 - 115
			Total Beryllium (Be)	2015/10/27		97	%	85 - 115
			Total Cadmium (Cd)	2015/10/27		96	%	85 - 115
			Total Chromium (Cr)	2015/10/27		100	%	85 - 115
			Total Cobalt (Co)	2015/10/27		102	%	85 - 115
			Total Copper (Cu)	2015/10/27		100	%	85 - 115
			Total Lead (Pb)	2015/10/27		99	%	85 - 115
			Total Manganese (Mn)	2015/10/27		98	%	85 - 115
			Total Nickel (Ni)	2015/10/27		100	%	85 - 115
			Total Selenium (Se)	2015/10/27		92	%	85 - 115
			Total Silver (Ag)	2015/10/27		103	%	85 - 115
			Total Zinc (Zn)	2015/10/27		94	%	85 - 115
4247327	N R	Spiked Blank DUP	Total Antimony (Sb)	2015/10/27		99	%	85 - 115
	-	•	Total Arsenic (As)	2015/10/27		99	%	85 - 115
			Total Barium (Ba)	2015/10/27		100	%	85 - 115
			Total Beryllium (Be)	2015/10/27		99	%	85 - 11 5
			Total Cadmium (Cd)	2015/10/27		98	%	85 - 115
			Total Chromium (Cr)	2015/10/27		101	%	85 - 115
			Total Cobalt (Co)	2015/10/27		103	%	85 - 115
			Total Copper (Cu)	2015/10/27		101	%	85 - 115
			Total Lead (Pb)	2015/10/27		102	%	85 - 115
			Total Manganese (Mn)	2015/10/27		100	%	85 - 115
			Total Nickel (Ni)	2015/10/27		102	%	85 - 115
			Total Selenium (Se)	2015/10/27		94	%	85 - 115
			Total Silver (Ag)	2015/10/27		102	%	85 - 115
			Total Zinc (Zn)	2015/10/27		96	%	85 - 11 5
4247327	N_R	RPD	Total Antimony (Sb)	2015/10/27	0.89		%	20
	• • • • • • • • • • • • • • • • • • • •		Total Arsenic (As)	2015/10/27	1.6		%	20
			Total Barium (Ba)	2015/10/27	0.74		%	20
			Total Beryllium (Be)	2015/10/27	2.1		%	20
			Total Cadmium (Cd)	2015/10/27	2.2		%	20
			Total Chromium (Cr)	2015/10/27	1.2		%	20
			Total Cobalt (Co)	2015/10/27	1.2		%	20
			Total Copper (Cu)	2015/10/27	1.1		%	20
			Total Lead (Pb)	2015/10/27	3.5		%	20
			Total Manganese (Mn)	2015/10/27	2.1		%	20
			Total Nickel (Ni)	2015/10/27	1.9		%	20
			Total Selenium (Se)	2015/10/27	2.4		%	20
			Total Silver (Ag)	2015/10/27	1.2		%	20

Mostardi Platt

Client Project #: M154005 Site Location: ROCKFORD

04/00				D-1-	-		_	
QA/QC	طنحا	OC Turns	Dayousator	Date	Malus	%		0011
Batch	Init	QC Type	Parameter	Analyzed.	Value	Recovery		QC Limits
4247227	N D	Mathad Blank	Total Zinc (Zn)	2015/10/27	1.6		%	20
4247327	N_K	Method Blank	Total Antimony (Sb)	2015/10/27	<0.010		ug/mL	
			Total Arsenic (As)	2015/10/27	<0.010		ug/mL	
!			Total Barium (Ba)	2015/10/27	<0.060		ug/mL	
ĺ			Total Beryllium (Be)	2015/10/27	<0.0020		ug/mL	
			Total Cadmium (Cd)	2015/10/27	<0.0020		ug/mL	
			Total Chromium (Cr)	2015/10/27	<0.0050		ug/mL	
			Total Cobalt (Co)	2015/10/27	<0.0020		ug/mL	
			Total Copper (Cu) Total Lead (Pb)	2015/10/27	<0.010		ug/mL	
!			Total Manganese (Mn)	2015/10/27	<0.0050		ug/mL	
			Total Nickel (Ni)	2015/10/27	<0.010		ug/mL	
			Total Selenium (Se)	2015/10/27 2015/10/27	<0.010 <0.020		ug/mL	
			Total Silver (Ag)	2015/10/27	<0.020		ug/mL	
			Total Zinc (Zn)	2015/10/27	< 0.050		ug/mL	
4248555	N D	Matrix Spike(BEC552)	Front Half Antimony (Sb)	2015/10/27	<0.030	102	ug/mL	70 120
4240333	14 17	Wattix Spike(BEC552)	Front Half Arsenic (As)	2015/10/28		103 96	% %	70 - 130 70 - 130
			Front Half Barium (Ba)	2015/10/28		101	96	
			Front Half Beryllium (Be)	2015/10/28		96	96	70 - 130
			Front Half Cadmium (Cd)	2015/10/28		100	96	70 - 130 70 - 130
			Front Half Chromium (Cr)	2015/10/28		96	%	70 - 130
			Front Half Cobalt (Co)	2015/10/28		98	96	70 - 130
			Front Half Copper (Cu)	2015/10/28		95	96	70 - 130
			Front Half Lead (Pb)	2015/10/28		94	%	70 - 130 70 - 130
			Front Half Manganese (Mn)	2015/10/28		98	96	70 - 130
			Front Half Nickel (Ni)	2015/10/28		95	96	70 - 130
			Front Half Selenium (Se)	2015/10/28		98	96	70 - 130
			Front Half Silver (Ag)	2015/10/28		100	%	70 - 130
			Front Half Zinc (Zn)	2015/10/28		101	96	70 - 130
4248555	N R	Matrix Spike DUP(BEC552)		2015/10/28		107	9%	70 - 130
	_		Front Half Arsenic (As)	2015/10/28		98	96	70 - 130
			Front Half Barium (Ba)	2015/10/28		102	%	70 - 130
			Front Half Beryllium (Be)	2015/10/28		95	96	70 - 130
			Front Half Cadmium (Cd)	2015/10/28		103	96	70 - 130
			Front Half Chromium (Cr)	2015/10/28		98	96	70 - 130
			Front Half Cobalt (Co)	2015/10/28		100	96	70 - 130
			Front Half Copper (Cu)	2015/10/28		96	96	70 - 130
			Front Half Lead (Pb)	2015/10/28		96	96	70 - 130
			Front Half Manganese (Mn)	2015/10/28		99	96	70 - 130
			Front Half Nickel (Ni)	2015/10/28		98	96	70 - 130
			Front Half Selenium (Se)	2015/10/28		99	96	70 - 130
			Front Half Silver (Ag)	2015/10/28		102	56	70 - 130
			Front Half Zinc (Zn)	2015/10/28		103	96	70 - 130
1248555	N_R	MS/MSD RPD	Front Half Antimony (Sb)	2015/10/28	3.8		96	20
	_		Front Half Arsenic (As)	2015/10/28	2.1		%	20
			Front Half Barium (Ba)	2015/10/28	0.99		96	20
			Front Half Beryllium (Be)	2015/10/28	1.0		96	20
			Front Half Cadmium (Cd)	2015/10/28	3.0		%	20
			Front Half Chromium (Cr)	2015/10/28	2.1		96	20
			Front Half Cobalt (Co)	2015/10/28	2.0		%	20
			Front Half Copper (Cu)	2015/10/28	1.0		%	20
			Front Half Lead (Pb)	2015/10/28	2.1		%	20
			Front Half Manganese (Mn)	2015/10/28	1.0		%	20

Mostardi Platt

Client Project #: M154005 Site Location: ROCKFORD

QA/QC		067	Description	Date	Value	% Recovery	LIMITS	QC Limits
Batch	Init	QC Type	Parameter	Analyzed 2015/10/28	3.1	Necovery	%	20
			Front Half Nickel (Ni)	2015/10/28	1.0		%	20
			Front Half Selenium (Se)		2.0		%	20
			Front Half Silver (Ag)	2015/10/28 2015/10/28	2.0		% %	20
		101	Front Half Zinc (Zn)		2.0	98	% %	85 - 11 5
424855 5	N_R	Spiked Blank	Front Half Antimony (Sb)	2015/10/28		99	% %	85 - 115
			Front Half Arsenic (As)	2015/10/28		99 97	% %	85 - 115
			Front Half Barium (Ba)	2015/10/28			%	85 - 115
			Front Half Beryllium (Be)	2015/10/28		102		
			Front Half Cadmium (Cd)	2015/10/28		97	%	85 - 115
			Front Half Chromium (Cr)	2015/10/28		101	%	85 - 115
			Front Half Cobalt (Co)	2015/10/28		104	%	85 - 115
			Front Half Copper (Cu)	2015/10/28		101	%	85 - 115
			Front Half Lead (Pb)	2015/10/28		102	%	85 - 115
			Front Half Manganese (Mn)	2015/10/28		102	%	85 - 115
			Front Half Nickel (Ni)	2015/10/28		102	%	85 - 115
			Front Half Selenium (Se)	2015/10/28		99	%	85 - 115
			Front Half Silver (Ag)	2015/10/28		103	%	85 - 115
			Front Half Zinc (Zn)	2015/10/28		104	%	85 - 115
4248555	N_R	Spiked Blank DUP	Front Half Antimony (Sb)	2015/10/28		99	%	85 - 115
			Front Half Arsenic (As)	2015/10/28		100	%	85 - 115
			Front Half Barium (Ba)	2015/10/28		97	%	85 - 115
			Front Half Beryllium (Be)	2015/10/28		100	%	85 - 115
			Front Half Cadmium (Cd)	2015/10/28		97	%	85 - 115
			Front Half Chromium (Cr)	2015/10/28		100	%	85 - 115
			Front Half Cobalt (Co)	2015/10/28		104	%	85 - 115
			Front Half Copper (Cu)	2015/10/28		101	%	85 - 115
			Front Half Lead (Pb)	2015/10/28		100	%	85 - 115
			Front Half Manganese (Mn)	2015/10/28		101	%	85 - 115
			Front Half Nickel (Ni)	2015/10/28		101	%	85 - 115
			Front Half Selenium (Se)	2015/10/28		98	%	8 5 - 115
			Front Half Silver (Ag)	2015/10/28		102	%	85 - 115
			Front Half Zinc (Zn)	2015/10/28		104	%	85 - 115
4248555	N_R	RPD	Front Half Antimony (Sb)	2015/10/28	0.70		%	20
			Front Half Arsenic (As)	2015/10/28	0.42		%	20
			Front Half Barium (Ba)	2015/10/28	0.054		%	20
			Front Half Beryllium (Be)	2015/10/28	1.9		%	20
			Front Half Cadmium (Cd)	2015/ 10 /28	0.28		%	20
			Front Half Chromium (Cr)	2015/10/28	0.39		%	20
			Front Half Cobalt (Co)	2015/10/28	0.76		%	20
			Front Half Copper (Cu)	2015/10/28	0.036		%	20
			Front Haif Lead (Pb)	2015/10/28	2.0		%	20
			Front Half Manganese (Mn)	2015/10/28	1.5		%	20
			Front Half Nickel (Ni)	2015/10/28	0.79		%	20
			Front Half Selenium (Se)	2015/10/28	0.45		%	20
			Front Half Silver (Ag)	2015/10/28	1.1		%	20
			Front Half Zinc (Zn)	2015/10/28	0.21		%	20
1248555	N R	Method Blank	Front Half Antimony (Sb)	2015/10/28	<0.40		ug	
,			Front Half Arsenic (As)	2015/10/28	< 0.40		ug	
			Front Half Barium (Ba)	2015/10/28	3.5,		ug	
					RDL=3.0		-	
			Front Half Beryllium (Be)	2015/10/28	<0.10		ug	
			Front Half Cadmium (Cd)	2015/10/28	<0.10		ug	
			Front Half Chromium (Cr)	2015/10/28	<0.30		ug	

Mostardi Platt

Client Project #: M154005 Site Location: ROCKFORD

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Front Half Cobalt (Co)	2015/10/28	<0.10		ug	
			Front Half Copper (Cu)	2015/10/28	<2.0		ug	
			Front Half Lead (Pb)	2015/10/28	< 0.20		ug	
			Front Half Manganese (Mn)	2015/10/28	<0.75		ug	
			Front Half Nickel (Ni)	2015/10/28	< 0.50		ug	
			Front Half Selenium (Se)	2015/10/28	<1.0		ug	
			Front Half Silver (Ag)	2015/10/28	< 0.20		ug	
			Front Half Zinc (Zn)	2015/10/28	<5.0		ug	
4248555	N D	RPD - Sample/Sample Dup	· · ·	2015/10/28	1.2		%	20
4240733	IN IN	Ki D Sample/Sample Dap	Front Half Arsenic (As)	2015/10/28	0.91		%	20
			Front Half Barium (Ba)	2015/10/28	NC		%	20
			Front Half Beryllium (Be)	2015/10/28	NC		%	20
			Front Half Cadmium (Cd)	2015/10/28	NC		%	20
			Front Half Chromium (Cr)	2015/10/28	5.0		%	20
			Front Half Cobalt (Co)	2015/10/28	1.7		%	20
			Front Half Copper (Cu)	2015/10/28	2.0		%	20
			Front Half Lead (Pb)	2015/10/28	1.8		%	20
			Front Half Manganese (Mn)	2015/10/28	3.2		%	20
			Front Half Nickel (Ni)	2015/10/28	1.4		%	20
			Front Half Selenium (Se)	2015/10/28	NC		%	20
			Front Half Silver (Ag)	2015/10/28	NC		%	20
			Front Half Zinc (Zn)	2015/10/28	1.2		%	20
42.405.64		Ad-tain Chiles/DECE79)	Front Half Antimony (Sb)	2015/10/28		100	%	70 - 130
4248561	N_K	Matrix Spike(BEC578)	Front Half Arsenic (As)	2015/10/28		97	%	70 - 130
			Front Half Barium (Ba)	2015/10/28		100	%	70 - 130
			Front Half Beryllium (Be)	2015/10/28		96	%	70 - 130
			Front Half Cadmium (Cd)	2015/10/28		98	%	70 - 130
			Front Half Chromium (Cr)	2015/10/28		99	%	70 - 130
			Front Half Cobalt (Co)	2015/10/28		100	%	70 - 130
				2015/10/28		99	%	70 - 130
			Front Half Copper (Cu)	2015/10/28		99	%	70 - 130
			Front Half Lead (Pb)	2015/10/28		100	%	70 - 130
			Front Half Manganese (Mn)			98	%	70 - 130
			Front Half Nickel (Ni)	2015/10/28 2015/10/28		98	%	70 - 130
			Front Half Selenium (Se)	2015/10/28		98	%	70 - 130 70 - 130
			Front Half Silver (Ag)	•		102	%	70 - 130
			Front Half Zinc (Zn)	2015/10/28		99	% %	70 - 130
4248561	N_R	Matrix Spike DUP(BEC578)		2015/10/28		98	%	70 - 130
			Front Half Arsenic (As)	2015/10/28		100	% %	70 - 130
			Front Half Barium (Ba)	2015/10/28				70 - 130
			Front Half Beryllium (Be)	2015/10/28		97 07	% «	
			Front Half Cadmium (Cd)	2015/10/28		97	%	70 - 130
			Front Half Chromium (Cr)	2015/10/28		100	%	70 - 130
			Front Half Cobalt (Co)	2015/10/28		101	% «	70 - 130
			Front Half Copper (Cu)	2015/10/28		99	%	70 - 130
			Front Half Lead (Pb)	2015/10/28		96	%	70 - 130
			Front Half Manganese (Mn)	2015/10/28		100	%	70 - 130
			Front Half Nickel (Ni)	2015/10/28		100	%	70 - 130
			Front Half Selenium (Se)	2015/10/28		99	%	70 - 130
			Front Half Silver (Ag)	2015/10/28		98	%	70 - 130
			Front Half Zinc (Zn)	2015/10/28		101	%	70 - 130
248561	N_R	MS/MSD RPD	Front Half Antimony (Sb)	2015/10/28	1.0		%	20
			Front Half Arsenic (As)	2015/10/28	1.0		%	20
			Front Half Barium (Ba)	2015/10/28	0		%	20

Mostardi Platt

Client Project #: M154005 Site Location: ROCKFORD

QA/QC				Date		76		-
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
			Front Half Beryllium (Be)	2015/10/28	1.0		96	20
			Front Half Cadmium (Cd)	2015/10/28	10		96	20
			Front Half Chromium (Cr)	2015/10/28	1.0		%	20
			Front Half Cobalt (Co)	2015/10/28	1.0		%	20
			Front Half Copper (Cu)	2015/10/28	0		%	20
			Front Half Lead (Pb)	2015/10/28	3.1		%	20
			Front Half Manganese (Mn)	2015/10/28	0		%	20
			Front Half Nickel (Ni)	2015/10/28	2.0		%	20
			Front Half Selenium (Se)	2015/10/28	1.0		%	20
			Front Half Silver (Ag)	2015/10/28	0		%	20
			Front Half Zinc (Zn)	2015/10/28	0.99		96	20
4248561	NR	Spiked Blank	Front Half Antimony (Sb)	2015/10/28		100	96	85 - 115
7240501	11,_11	Spinea Diam	Front Half Arsenic (As)	2015/10/28		100	%	85 - 115
			Front Half Barium (Ba)	2015/10/28		100	%	8 5 - 115
			Front Half Beryllium (Be)	2015/10/28		96	46	85 - 115
			Front Half Cadmium (Cd)	2015/10/28		97	%	85 - 115
			Front Half Chromium (Cr)	2015/10/28		101	96	85 - 11 5
			Front Half Cobalt (Co)	2015/10/28		102	96	85 - 115
			Front Half Copper (Cu)	2015/10/28		101	96	85 - 115
			Front Half Lead (Pb)	2015/10/28		102	96	85 - 115
			Front Half Manganese (Mn)	2015/10/28		102	96	85 - 115
			Front Half Nickel (Ni)	2015/10/28		100	96	85 - 115
			Front Half Selenium (Se)	2015/10/28		99	96	85 - 115
			Front Half Silver (Ag)	2015/10/28		101	96	85 - 115
			Front Half Zinc (Zn)	2015/10/28		100	36	85 - 115
4248561	M R	Spiked Blank DUP	Front Half Antimony (Sb)	2015/10/28		100	96	85 - 115
4240JUI	14_14	Spiked Blank DOI	Front Half Arsenic (As)	2015/10/28		99	96	85 - 11 5
			Front Half Barium (Ba)	2015/10/28		99	96	85 - 115
			Front Half Beryllium (Be)	2015/10/28		96	%	85 - 115
			Front Half Cadmium (Cd)	2015/10/28		97	4	85 - 115
			Front Half Chromium (Cr)	2015/10/28		100	%	85 - 115
			Front Half Cobalt (Co)	2015/10/28		101	%	85 - 115
			Front Half Copper (Cu)	2015/10/28		100	96	85 - 115
			Front Half Lead (Pb)	2015/10/28		100	46	85 - 115
				2015/10/28		101	%	85 - 11 5
			Front Half Manganese (Mn) Front Half Nickel (Ni)	2015/10/28		99	96	85 - 115
			· · · · · · · · · · · · · · · · · · ·	2015/10/28		99	96	
			Front Half Selenium (Se) Front Half Silver (Ag)	2015/10/28		101	96	85 - 115
			. * . 				100	85 - 115
. 2 4 0 5 6 4	N D	DDD	Front Half Zinc (Zn)	2015/10/28	0.46	100	%	85 - 115
1248561	N_R	KPD	Front Half Antimony (Sb)	2015/10/28	0.46		%	20
			Front Half Arsenic (As)	2015/10/28	0.52		%	20
			Front Half Barium (Ba)	2015/10/28	0.31		96	20
			Front Half Beryllium (Be)	2015/10/28	0.039		%	20
			Front Half Cadmium (Cd)	2015/10/28	0.15		%	20
			Front Half Chromium (Cr)	2015/10/28	1.5		%	20
			Front Half Cobalt (Co)	2015/10/28	0.80		30	20
			Front Half Copper (Cu)	2015/10/28	0.96		70	20
			Front Half Lead (Pb)	2015/10/28	1.4		7a	20
			Front Half Manganese (Mn)	2015/10/28	1.0		74.	20
			Front Half Nickel (Ni)	2015/10/28	0.69		96	20
			Front Half Selenium (Se)	2015/10/28	0.40		%	20
			Front Half Silver (Ag)	2015/10/28	0.83		96	20
			Front Half Zinc (Zn)	2015/10/28	0.30		%	20

Mostardi Platt

Client Project #: M154005 Site Location: ROCKFORD

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC				Date		%		
Batch	Init	QC Type	Parameter	Analyzed	Value	Recovery	UNITS	QC Limits
4248561	ΝR	Method Blank	Front Half Antimony (Sb)	2015/10/28	< 0.40		ug	
	_		Front Half Arsenic (As)	2015/10/28	<0.40		ug	
			Front Half Barium (Ba)	2015/10/28	4.3, RDL=3.0		ug	
			Front Half Beryllium (Be)	2015/10/28	<0.10		ug	
			Front Half Cadmium (Cd)	2015/10/28	< 0.10		ug	
			Front Half Chromium (Cr)	2015/10/28	< 0.30		ug	
			Front Half Cobalt (Co)	2015/10/28	<0.10		ug	
			Front Half Copper (Cu)	2015/10/28	<2.0		ug	
			Front Half Lead (Pb)	2015/10/28	<0.20		ug	
			Front Half Manganese (Mn)	2015/10/28	<0.75		ug	
			Front Half Nickel (Ni)	2015/10/28	<0.50		ug	
			Front Half Selenium (Se)	2015/10/28	<1.0		ug	
			Front Half Silver (Ag)	2015/10/28	<0.20		ug	
			Front Half Zinc (Zn)	2015/10/28	6.3,		ug.	
					RDL=5.0			
4248561	N R	RPD - Sample/Sample Dup	Front Half Antimony (Sb)	2015/10/28	0.80		%	20
72 10301			Front Half Arsenic (As)	2015/10/28	NC		%	20
			Front Half Barium (Ba)	2015/10/28	NC		%	20
			Front Half Beryllium (Be)	2015/10/28	NC		%	20
			Front Half Cadmium (Cd)	2015/10/28	4.5		%	20
			Front Half Chromium (Cr)	2015/10/28	NC		%	20
			Front Half Cobalt (Co)	2015/10/28	NC		%	20
			Front Half Copper (Cu)	2015/10/28	0.92		%	20
			Front Half Lead (Pb)	2015/10/28	0.30		%	20
			Front Half Manganese (Mn)	2015/10/28	NC		%	20
			Front Half Nickel (Ni)	2015/10/28	2.3		%	20
			Front Half Selenium (Se)	2015/10/28	NC		%	20
			Front Half Silver (Ag)	2015/10/28	NC		%	20
			Front Half Zinc (Zn)	2015/10/28	NC NC		%	20

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (one or both samples < 5x RDL).

Mostardi Platt
Client Project #: M154005
Site Location: ROCKFORD

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Ralph Siebert, Operations Manager - Inorganic Analyses

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

October 30, 2015

Jenna Ghanma Mostardi Platt 888 Industrial Drive Elmhurst, iL 60123

Enclosed is your final report for ERA's Stationary Source Audit Sample (SSAS) Program. Your final report includes an evaluation of all results submitted by your laboratory to ERA.

Data Evaluation Protocols: All analytes in ERA's SSAS Program have been evaluated comparing the reported result to the acceptance limits generated using the criteria contained in the TNI SSAS Table.

For any "Not Acceptable" results, please contact your state regulator for any corrective action requirements.

Thank you for your participation in ERA's SSAS Program. If you have any questions, please contact our Proficiency Testing Department at 1-800-372-0122.

Sincerely,

David Kilhefner Quality Officer

cc: Project File Number 0929150

Recipient Type	Report Recipient	Contact	Project ID
Agency	IL-EPA Region 5 (SSAS) 77 W Jackson Blvd AE-17J Chicago, IL 60604 USA	Dakota Prentice prentice.dakota@epa.gov Phone: 312-886-6761	
Facility	Behr Iron And Metal 1100 Seminary St Rockford, IL 61104 USA	John Pinion jpinion@rka-inc.com Phone: 630-393-9000	
Lab	Maxxam Analytics Inc 6740 Campobello Rd Mississauga, ON L5N 2L8 Canada	Clayton Johnson Sr. Project Manager cjohnson@maxxam.ca Phone: (905) 817-5769	
Tester	Mostardi Platt 888 Industrial Drive Elmhurst, IL 60123 USA	Jenna Ghanma jghanma@mp-mail.com Phone: 630-993-2685	Behr M154005

0929150 Laboratory Exception Report

ERA
A Waters Company

Clayton Johnson Sr. Project Manager Maxxam Analytics Inc 6740 Campobello Rd Mississauga, ON L5N 2L8 (905) 817-5769

EPA ID: ERA Customer Number:

Evaluation Checks

There are no values reported with < where the assigned value was greater than 0.

Not Acceptable Evaluations

There were no Not Acceptable evaluations for this study.

16341 Table Mountain Pkwy • Golden, CO 80403 • 800.372.0122 • 303.431.8454 • fax 303.421.0159 • www.eraqc.com

A Waters Company

Final Report Results For Laboratory Maxxam Analytics Inc

SSAP Evaluation Report

Project Number: 0929150

ERA Customer Number: M748564

Laboratory Name: Maxxam Analytics Inc

Inorganic Results

16341 Table Mountain Pkwy • Golden, CO 80403 • 800.372.0122 • 303.431.8454 • fax 303.421.0159 • www.eraqc.com

0929150 Evaluation Final Complete Report

Not Reported M748564

iber:	Analyst Name
EPA ID: ERA Customer Number:	
EPA ID:	Method Description Date
_	Reported Assigned Acceptance Performance Value Limits Evaluation
	Acceptance
Clayton Johnson Sr. Project Manager Maxxam Analytics Inc 6740 Campobello Rd Mississauga, ON L5N 2L8 (905) 817-5769	Assigned Value
Clayton Johnson Sr. Project Manager Maxxam Analytics Inc 6740 Campobello Rd Mississauga, ON L5N (905) 817-5769	Reported Value
Clayto Sr. Pro Maxxa 6740 C Missis (905) 8	Units
A Waters Company	Analyte
Project No. M1540 Rotary Dryer Disch	Code Code

SSAP M	SSAP Metals on Filter Paper (cat# 1425, lot# 09	# 092915O) Study Dates: 09/29/15 - 10/30/15	s: 09/29/15	- 10/30/15					
1005	Antimony	µg/Filter	32.2	31.9	23.9 - 39.9	Acceptable	EPA Method 29 2000	10/28/2015	
1010	Arsenic	µg/Filter	26.4	27.3	20.5 - 34.1	Acceptable	EPA Method 29 2000	10/28/2015	
1015	Barium	µg/Filter	31.4	27.2	20.4 - 34.0	Acceptable	EPA Method 29 2000	10/28/2015	
1020	Beryllium	µg/Filter	12.5	13.6	10.2 - 17.0	Acceptable	EPA Method 29 2000	10/28/2015	
1030	Cadmium	ug/Filter	13.2	13.6	10.9 - 16.3	Acceptable	EPA Method 29 2000	10/28/2015	
1040	Chromium	ug/Filter	21.0	20.4	16.3 - 24.5	Acceptable	EPA Method 29 2000	10/28/2015	
8,1050	Cobatt	ug/Filter	14.6	13.6	10.2 - 17.0	Acceptable	EPA Method 29 2000	10/28/2015	
6 1055	Copper	µg/Filter	14.2	13.6	10.2 - 17.0	Acceptable	EPA Method 29 2000	10/28/2015	
1075	Lead	ug/Filter	27.4	27.2	21.8 - 32.6	Acceptable	EPA Method 29 2000	10/28/2015	ģ.
1090	Manganese	µg/Filter	14.5	13.6	9.52 - 17.7	Acceptable	EPA Method 29 2000	10/28/2015	
1105	Nickel	hg/Filter	27 1	27.2	19.0 - 35.4	Acceptable	EPA Method 29 2000	10/28/2015	
1140	Selenium	µg/Filter	26.9	27.2	19.0 - 35.4	Acceptable	EPA Method 29 2000	10/28/2015	
1150	Silver	µg/Filter	40.8	40.8	28.6 - 53.0	Acceptable	EPA Method 29 2000	10/28/2015	
1165	Thallium	ug/Filter		40.8	30.6 - 51.0	Not Reported		-	
1190	Zinc	µg/Filter	29.0	27.2	190-354	Acceptable	EPA Method 29 2000	10/28/2015	

0929150 Evaluation Final Complete Report

Not Reported M748564

EPA ID: ERA Customer Number:	Analyst Name
EPA ID:	Analysis Date
EP.	Method Description Date
	Reported Assigned Acceptance Performance Value Value Limits Evaluation
	Acceptance Limits
Clayton Johnson Sr. Project Manager Maxxam Analytics Inc 6740 Campobello Rd Mississauga, ON L5N 2L8 (905) 817-5769	Assigned Value
	Reported Value
Clayto Sr. Pro Maxxa 6740 C Missis (905) 8	Units
A Waters Company	Analyte
Project No. M15400 Rotary Dryer Discha	abs Analyte Code

Code	•			A	Agine					İ	
SAP Me	SSAP Metals in Impinger Solution (cat# 142	26, lot# 0929	6, lot# 0929150) Study Dates: 09/29/15 - 10/30/15	Dates: 09/2	39/15 - 10/3	0/15					
1005	Antimony	1	hg/mľ	1.78	1.70	1.28 - 2.12	Acceptable	EPA Method 29 2000	10/27/2015		
1010	Arsenic	3	hg/mL	0.902	0.895	0.671 - 1.12	Acceptable	EPA Method 29 2000	10/27/2015		
1015	Barium	3	hg/mL	1.10	1.05	0.788 - 1.31	Acceptable	EPA Method 29 2000	10/27/2015		
1020	Beryllium	2	ng/mL	1.45	1.35	1.01 - 1.69	Acceptable	EPA Method 29 2000	10/27/2015		
1030	Cadmium	1	hg/ml_	117	1.12	0.896 - 1.34	Acceptable	EPA Method 29 2000	10/27/2015		
1040	Chromium		µg/mL	2.51	2.42	1.94 - 2.90	Acceptable	EPA Method 29 2000	10/27/2015		
2 1050	Cobalt	1	hg/mL	1.96	1.75	1.31 - 2.19	Acceptable	EPA Method 29 2000	10/27/2015		
9 1055	Copper	1	hg/mL	1.29	1.22	0.915 - 1.52	Acceptable	EPA Method 29 2000	10/27/2015		
1075	Lead	1. 1. 1. 1. 1.	hg/mL	0.719	969.0	0.521 - 0.869	Acceptable	EPA Method 29 2000	10/27/2015		т
1090	Manganese		µg/mL	0.343	0.326	0.244 - 0.408	Acceptable	EPA Method 29 2000	10/27/2015		
1105	Nickel	-	hg/mL	0.372	0.357	0.286-0.428	Acceptable	EPA Method 29 2000	10/27/2015		
1140	Selenium	1	hg/mL	1.81	1.80	1.35 - 2.25	Acceptable	EPA Method 29 2000	10/27/2015		
1150	Silver	1	µg/mL	0.878	0.818	0.614 - 1.02	Acceptable	EPA Method 29 2000	10/27/2015		- 1
1165	Thallium	_	ng/mL		1.59	1.19 - 1.99	Not Reported				_
1190	Zinc		hg/ml_	1.74	1.64	1.23 - 2.05	Acceptable	EPA Method 29 2000	10/27/2015	A.	

Page 4 of 4

Project #: 0929150

Client: Facility: Project Number: Test Location:

Rk & Associates, Inc. Behr Iron and Metal Rockford Facility M154005

Rotary Dryer Discharge

Test Method: Filterable Analysis Date: 5/29

10/14/2015

Filter Drying Temp °F: Ambient-Des. 24 hrs Analyst: JMG

Desci	iption	Sample Date	ID#	vol. (ml)	Initial Welght (grams)	Final Weight (grams)	Net Weight Gain (grams)
		Filter	able Partic	ulate			
Test No. 1		10/7/2015		_			
Source Condition:	Normal						
						1.0937	0.6475
M5 Filter			8884		0.4462		0.1028
Acetone Wash (Teflon Baggies)			566	68 ml	1.3480	1.4508	0.0003
Acetone Blank							0.7500
Total Front Half Weight							0.7500
		Filter	able Partic	ulate			
Test No. 2		10/7/2015					
Source Condition:	Normal						
							0.0040
M5 Filter		· · · · · · · · · · · · · · · · · · ·	8847		0.4445	0.8094	0.3649
Acetone Wash (Teflon Baggies)			567	92 ml	1.3170	1.5684	0.2514
Acetone Blank							0.0004
Total Front Half Weight							0.6159
Total Total Troight		Filter	able Partic	culate			
Test No. 3		10/7/2015					
Source Condition:	Nomal				1		
Social Contains in							
M5 Filter			8848		0.4493	0.9762	0.5269
Acetone Wash (Teflon Baggies)			568	86 ml	1.3318	1.7808	0.4490
							0.0003
Acetone Blank							0.9756
Total Front Half Weight			. <u> </u>				

© Mostardi Platt

Client:	F	Rk & Associates, Inc		
Facility:	Behr Iron	and Metal Rockford	d Facility	
Test Location:	R	otary Dryer Discharg	ge	
Project #:		M154005		
Test Method:		5/29		
Test Engineer:		BRS		
Test Technician:		SPC		
	<u>R1</u>	<u>R2</u>	<u>R3</u>	
Temp ID:	CM25	CM25	CM25	
Meter ID:	CM25	CM25	CM25	
Pitot ID:	118	118	118	
Nozzle Diameter (Inches):	0.494	0.494	0.494	
Meter Calibration Factor (Y):	1.016	1.016	1.016	
Meter Orifice Setting (Delta H):	1.751	1.751	1.751	
Nozzle Kit ID Number and Material:	Teflon #4	Teflon #4	Teflon #4	
Pitot Tube Coefficient:		0.840		
Probe Length (Feet):		3.0		
Probe Liner Material:		Glass		
Sample Plane:		Horizontal		
Port Length (Inches):		4.00		
Port Size (Diameter, Inches):		6.00		
Port Type:		Nipple		
Duct Shape:	Circular			
Diameter (Feet):	1.5			
Duct Area (Square Feet):	1.767			
Upstream Diameters:		0.500		
Downstream Diameters:		2.000		
Number of Ports Sampled:		1		
Number of Points per Port:		1		
Minutes per Point:		120.0		
Minutes per Reading:		5.0		
Total Number of Traverse Points:		1		
Test Length (Minutes):		120		
Train Type:		Anderson Box		
Source Condition:		Normal		
Servomex Serial Number:		01440D1/3935		
Moisture Balance ID:		S10-37		

of Runs

3

Client: Rk & Associates, Inc.

Facility: Behr Iron and Metal Rockford Facility

Test Location: Rotary Dryer Discharge Test Method: 5/29

Source Condtion:	31 E 3	Normal Run 1	Normal Run 2	Normal Run 3
Identify Analyte: Molecular Weight: ug (net) collected:	Antimony (Sb) 121.75	ADL 35.38	ADL 40.75	DLL 27.16
ldentify Analyte: Molecular Weight: ug (net) collected:	Arsenic (As) 74.92	DLL 20.26	BDL 20.20	DLL 20.36
Identify Analyte: Molecular Weight: ug (net) collected:	Beryllium (Be) 9.01	BDL 5.05	BDL 5.05	BDL 5.05
Identify Analyte: Molecular Weight: ug (net) collected:	Cadmium (Cd) 112.4	ADL 6.545	BDL 5	BDL 5
Identify Analyte: Molecular Weight: ug (net) collected:	Chromium (Cr) 51.99	ADL 4369.73	ADL 2839.40	ADL 1710.28
Identify Analyte: Molecular Weight: ug (net) collected:	Cobalt (Co) 58.93	ADL 740.23	ADL 1451.58	ADL 906.46
ldentify Analyte: Molecular Weight: ug (net) collected:	Copper (Cu) 63.55	ADL 66316.30	ADL 149008.10	ADL 481028.10
Identify Analyte: Molecular Weight: ug (net) collected:	Lead (Pb) 207.19	ADL 3221.56	ADL 1930.96	ADL 2395.56
Identify Analyte: Molecular Weight: ug (net) collected:	Manganese (Mn) 54.94	ADL 8859.2	ADL 3589.23	ADL 636.44
Identify Analyte: Molecular Weight: ug (net) collected:	Nickel (Ni) 58.71	ADL 46604.44	ADL 29908.12	ADL 21307.49
ldentify Analyte: Molecular Weight: ug (net) collected:	Selenium (Se) 78.96	DLL 58.92	DLL 102.50	DLL 51.20

Client: Rk & Associates, Inc. Facility: Behr Iron and Metal Rockford Facility

Test Location: Rotary Dryer Discharge Test Method: 5/29

Source Condtion:		Normal Run 1	Normal Run 2	Normal Run 3
Identify Analyte:	Silver (Ag)			
Molecular Weight:	107.87	BDL	BDL	DLL
ug (net) collected:		10.1	10.1	18.10
Identify Analyte:	Zinc (Zn)			
Molecular Weight:	65.37	ADL	ADL	ADL
ug (net) collected:		103017.70	29219.5	4391.8
Identify Analyte:	Barium (Ba)			
Molecular Weight:	137.33	BDL	BDL	DLL
ug (net) collected:		151.5	151.5	153.80

Run 1-Method 5/29

Client: Rk & Associates, Inc.

Facility: Behr Iron and Metal Rockford Facility

#DIV/0!

Test Location: Rotary Dryer Discharge

Date: 10/7/15 Start Time: 8:20 **End Time:** 10:20

Source Condition: Normal							
DRY GAS METER C	ONDITIONS		STACK CONDITIONS	STACK CONDITIONS			
ΔН:	1.73	in. H₂O	Static Pressure	-5.00	ìn. H₂O		
Meter Temperature, Tm: Sqrt ΔP:	71.4 0.000	°F in. H₂O	Flue Pressure (Ps): Carbon Dioxide:	29.02 0.00	in. Hg. abs. %		
Stack Temperature, Ts: Meter Volume, Vm:	450.9 81.935	°F ft ³	Oxygen: Nitrogen: Gas Weight dry, Md:	20.90 79.10 28.836	% % lb/lb mole		
Meter Volume, Vmstd: Meter Volume, Vwstd: Isokinetic Variance:	81.593 1.912 #DIV/0!	dscf wscf %l	Gas Weight wet, Ms: Excess Air:	28.588	lb/lb mole %		
Test Length	120.00	in mins.	Gas Velocity, Vs: Volumetric Flow:	0,000 0	fps acfm		
Nozzle Diameter Barometric Pressure	0.494 29.39	in inches in Hg	Volumetric Flow: Volumetric Flow:	0	dscfm scfm		

MOISTURE DETERMINATION

2004.5 Silica Initial Wt. 751.2 grams Initial Impinger Content: ml Silica Final Wt. 775.9 grams 2020.4 Final Impinger Content: ml Silica Difference: 24.7 grams Impinger Difference: 15.9 ml

Total Water Gain: 40.6

Calculated Fo:

Moisture, Bws:

0.023

#DIV/0!

Fo Validity:

Port- Point No.	Clock Time	Velocity Head ∆p in. H2O	Orifice ΔH In. H2O	Actual Meter Vol. ft ³	Stack Temp °F	Meter ' Inlet °F	Temp Outlet °F	Sqrt. Δp	Collected Vol. ft ³	Point Vel ft/sec
1-1	8:20:00	0.00	1.73	3.460	377	65	65	0.000	3.725	0.000
1-1	8:25:00	0.00	1.73	7,185	385	67	65	0.000	3.300	0.000
1-1	8:30:00	0.00	1.73	10.485	400	68	65	0.000	3.750	0.000
1-1	8:35:00	0.00	1.73	14.235	395	69	65	0.000	3.250	0.000
1-1	8:40:00	0.00	1.73	17.485	372	71	66	0,000	3.333	0.000
1-1	8:45:00	0.00	1.73	20.818	367	71	66	0.000	3.256	0.000
1-1	8:50:00	0.00	1.73	24.074	418	73	67	0.000	3.345	0.000
1-1	8:55:00	0.00	1.73	27.419	535	75	68	0.000	3.222	0.00
1-1	9:00:00	0.00	1.73	30.641	592	76	69	0.000	3.255	0.00
1-1	9:05:00	0.00	1.73	33.896	500	77	70	0.000	3.250	0.00
1-1	9:10:00	0.00	1.73	37.146	476	77	70	0.000	3.400	0.00
1-1	9:15:00	0.00	1.73	40.546	535	76	71	0.000	3.255	0.00
1-1	9:20:00	0.00	1.73	43.801	580	76	72	0.000	3.300	0.00
1-1	9:25:00	0.00	1,73	47.101	603	75	73	0.000	3.280	0.00
1-1	9:30:00	0.00	1.73	50.381	480	74	72	0.000	3.210	0.00
1-1	9:35:00	0.00	1.73	53.591	394	74	71	0.000	3.265	0.00
1-1	9:40:00	0.00	1.73	56.856	383	74	72	0.000	3.250	0.00
1-1	9:45:00	0.00	1.73	60,106	361	73	72	0.000	3.300	0.00
1-1	9:50:00	0.00	1.73	63,406	349	74	72	0.000	3.250	0.00
1-1	9:55:00	0.00	1.73	66.656	342	74	72	0.000	3.750	0.00
1-1	10:00:00	0.00	1.73	70.406	329	74	72	0.000	3.800	0.00
1-1	10:05:00	0.00	1.73	74,206	442	74	72	0.000	3.900	0.00
1-1	10:10:00	0.00	1,73	78.106	507	74	72	0.000	3,500	0.00
1-1	10:15:00	0.00	1.73	81.606	550	74	72	0.000	3.789	0.00
1-1	10:10:00	0.00	<u> </u>	85.395	600	74	72			
	2:00:00	<u> </u>		81.935	i .	73.2	69.7		81.935	;

2:00:00 Total 71.4 0.000 450.9 1.73 Average 0.000 329.0 65.0 1.73 Min 0.000 603.0 77.0 1.73 Max

© Mostardi Platt

Run 2-Method 5/29

Client: Rk & Associates, Inc.

Facility: Behr Iron and Metal Rockford Facility

Test Location: Rotary Dryer Discharge

Source Condition: Normal

Date: 10/7/15 Start Time: 11:05

End Time: 13:05

DRY GAS METER C	CONDITIONS			STACK CONDIT	IONS	
<u>Δ</u> H:	1.73	ln. H₂O		Static Pressur	e -0.50	in. H ₂ O
Meter Temperature, Tm:	79.7	°F	Flo	ue Pressure (Ps)	29.35	in. Hg. abs.
Sqrt ∆P:	0.000	In. H ₂ O		Carbon Dioxide	: 0.00	%
Stack Temperature, Ts:	411.0	°F		Oxyger	: 20.90	%
Meter Volume, Vm:	89.180	ft ³		Nitroger	: 79.1	%
Meter Volume, Vmstd:	87.454	dscf	Gas	s Weight dry, Mo	28.836	lb/lb mole
Meter Volume, Vwstd:	1.950	wscf	Gas	Weight wet, Ms	: 28.600	lb/lb mole
Isokinetic Variance:	#DIV/0!	%l		Excess Air		%
				Gas Velocity, Vs	: 0.000	fps
Test Length	120.00	in mins.		Volumetric Flow	r: 0	acfm
Nozzle Diameter	0.494	in inches		Volumetric Flow	r. O	dscfm
Barometric Pressure	29.39	in Hg		Volumetric Flow	. 0	scfm
Calculated Fo:	#DIV/0!			Fo Validity	: #DIV/0!	
		MOIS	TURE DETERMINATION			
Initial Impinger Content:	2074.3	ml	Silica Initial Wt.	791.6	grams	· · · · · · · · · · · · · · · · · · ·
Final Impinger Content:	2093.6	ml	Silica Final Wt.	813.7	grams	

Impinger Difference: Silica Difference: 22.1 grams 19.3 ml

Total Water Gain: 41.4 Moisture, Bws: 0.022

		Velocity	Orifice	Actual	Stack	Meter	Temp		Collected	Point
Port-	Clock	Head ∆p	ΔΗ	Meter Vol.	Temp	Inlet	Outlet	Sqrt.	Vol.	Vel
Point No.	Time	in. H2O	In. H2O	ft ³	°F	°F	*F	Δр	ft ³	ft/sec
1-1	11:05:00	0.00	1.73	91.472	513	73	72	0.000	3.750	0.000
1-1	11:10:00	0.00	1.73	95.222	386	78	73	0.000	3.800	0.000
1-1	11:15:00	0.00	1.73	99.022	415	78	73	0.000	3.777	0.000
1-1	11:20:00	0.00	1.73	102.799	341	79	74	0.000	3.211	0.000
1-1	11:25:00	0.00	1.73	106.010	328	80	74	0.000	3.750	0.000
1-1	11:30:00	0.00	1.73	109.760	315	80	75	0,000	3.750	0.000
1-1	11:35:00	0.00	1.73	113.510	307	81	76	0,000	3.800	0.000
1-1	11:40:00	0.00	1.73	117.310	310	81	76	0.000	3.650	0.000
1-1	11:45:00	0.00	1.73	120.960	320	81	76	0.000	3.750	0.000
1-1	11:50:00	0.00	1.73	124.710	334	82	77	0.000	3.750	0.000
1-1	11:55:00	0.00	1.73	128.460	400	83	77	0.000	3.775	0.000
1-1	12:00:00	0.00	1.73	132.235	393	84	,77	0.000	3.750	0.000
1-1	12:05:00	0.00	1.73	135.985	532	84	78	0.000	3.811	0.000
1-1	12:10:00	0.00	1.73	139.796	720	85	78	0.000	3.777	0.000
1-1	12:15:00	0.00	1.73	143.573	565	85	78	0.000	3.850	0.000
1-1	12:20:00	0.00	1.73	147.423	420	85	79	0.000	3.650	0.000
1-1	12:25:00	0.00	1.73	151.073	721	85	79	0.000	3.455	0.000
1-1	12:30:00	0.00	1.73	154.528	413	84	79	0.000	3.750	0.000
1-1	12:35:00	0.00	1.73	158.278	357	84	79	0.000	3.800	0.000
1-1	12:40:00	0.00	1.73	162.078	342	84	80	0.000	3.650	0.000
1-1	12:45:00	0.00	1.73	165.728	346	84	80	0.000	3.789	0.000
1-1	12:50:00	0.00	1.73	169.517	350	84	80	0.000	3.785	0.000
1-1	12:55:00	0.00	1.73	173.302	365	85	80	0.000	3.561	0.000
1-1	13:00:00	0.00	1.73	176.863	370	85	80	0.000	3.789	0.000
	13:05:00	_		180.652						

2:00:00 89.180 82.3 77.1 89.180 Total 1.73 411.0 79.7 0.000 Average 0.000 1.73 307.0 72.0 Min

721.0

85.0

0.000

1.73

Mostardi Platt Project No. M154005C Rotary Dryer Discharge

Max

Run 3-Method 5/29

Client: Rk & Associates, Inc.

Start Time: Facility: Behr Iron and Metal Rockford Facility

Test Location: Rotary Dryer Discharge

Source Condition: Normal

13:48 15:48 **End Time:** TACK CONDITIONS

DRY GAS METER C	DRY GAS METER CONDITIONS				
ΔН:	1.73	In. H ₂ O	Static Pressure	-0.50	in. H ₂ O
Meter Temperature, Tm:	84.0	°F	Flue Pressure (Ps):	29.35	in, Hg. abs.
Sqrt ∆P:	0.000	In. H ₂ O	Carbon Dioxide:	0.00	%
Stack Temperature, Ts:	555.8	°F	Oxygen:	20.90	%
Meter Volume, Vm:	91.209	ft ³	Nitrogen:	79.1	%
Meter Volume, Vmstd:	88.732	dscf	Gas Weight dry, Md:	28.836	lb/lb mole
Meter Volume, Vwstd:	2.529	wscf	Gas Weight wet, Ms:	28.536	lb/lb mole
Isokinetic Variance:	#DIV/0!	% I	Excess Air:		%
			Gas Velocity, Vs:	0.000	fps
Test Length	120.00	in mins.	Volumetric Flow:	0	acfm
Nozzle Diameter	0.494	in inches	Volumetric Flow:	0	dscfm
Barometric Pressure	29.39	in Hg	Volumetric Flow:	0	scfm
Calculated Fo:	#DIV/0I	-	Fo Validity:	#DIV/0!	
		MOISTURE DETERMINATION			

Initial Impinger Content: 2000.3 ml Silica Initial Wt. 754.7 grams 777.5 grams Silica Final Wt. Final Impinger Content: 2031.2 ml Silica Difference: 22.8 grams Impinger Difference: 30.9 ml

Moisture, Bws: 0.028 Total Water Gain: 53.7

		Velocity	Orifice	Actual	Stack	Meter	Тетр		Collected	Point
Port- Point No.	Clock Time	Head ∆p in. H2O	ΔH In. H2O	Meter Vol. ft ³	Temp °F	inlet °F	Outlet °F	Sqrt. ∆p	Vol. ft³	Vel ft/sec
1-1	13:48:00	0.00	1.73	87.430	548	80	79	0.000	3.750	0.000
1-1	13:53:00	0.00	1.73	91.180	381	84	80	0.000	3.800	0.000
1-1	13:58:00	0.00	1.73	94.980	363	86	80	0.000	3.777	0.000
1-1	14:03:00	0.00	1.73	98.757	385	86	80	0.000	3.666	0.000
1-1	14:08:00	0.00	1.73	102.423	358	88	82	0.000	3.854	0.000
1-1	14:13:00	0.00	1.73	106.277	284	91	81	0.000	3.750	0.000
1-1	14:18:00	0.00	1.73	110.027	322	92	82	0.000	3.755	0.000
1-1	14:23:00	0.00	1.73	113.782	467	88	82	0.000	3,569	0.000
1-1	14:28:00	0.00	1.73	117.351	580	88	82	0.000	3,965	0.000
1-1	14:33:00	0.00	1.73	121.316	746	88	83	0.000	3,750	0.000
1-1	14:38:00	0.00	1.73	125.066	827	89	83	0.000	3.920	0.000
1-1	14:43:00	0.00	1.73	128.986	815	88	83	0.000	3.850	0.000
1-1	14:48:00	0.00	1.73	132.836	750	87	83	0.000	3.650	0.000
1-1	14:53:00	0.00	1.73	136.486	750	86	83	0.000	3.850	0.000
1-1	14:58:00	0.00	1.73	140.336	750	85	83	0.000	3.777	0.000
1-1	15:03:00	0.00	1.73	144.113	700	85	83	0.000	3.845	0.000
1-1	15:08:00	0.00	1.73	147.958	685	84	83	0.000	3.716	0.000
1-1	15:13:00	0.00	1.73	151.674	711	84	83	0.000	3.935	0.000
1-1	15:18:00	0.00	1.73	155.609	468	84	83	0.000	3.750	0.000
1-1	15:23:00	0.00	1.73	159.359	622	84	83	0.000	3.850	0.000
1-1	15:28:00	0.00	1.73	163,209	502	84	83	0.000	3.655	0.000
1-1	15:33:00	0.00	1.73	166,864	500	84	82	0.000	3.755	0.000
1-1	15:38:00	0.00	1.73	170.619	428	84	82	0,000	3.566	0.000
1-1	15:43:00	0.00	1.73	174.185	398	83	82	0.000	4.454	0.000
	15:48:00			178.639						

91.209 85.9 82.1 2:00:00 91.209 Total 0.000 555.8 84.0 1.73 Average 284.0 79.0 0.000 1.73 Min 827.0 92.0 0.000 1.73 Max

10/7/15

Date:

Behr Iron and Metal Rockford, IL

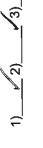
	Time	CO2 %	O2%	•00
_	8:39:00	0.23	18.73 cal	
	8:40:00	7.66	12.76 cal	
	8:41:00	10.07	11.98 çal	
	8:42:00	10.07	12 cal	
	8:43:00	9.35	11.78 cal	
	8:44:00	0.13	0.13 cal	
	8:45:00	0.03	-0.04 cal	
	8:46:00	0.01	0.04 cal	
	8:47:00	0.02	0.04 cal	
	8:48:00	18.74	20.13 cal	
	8:49:00	18.78	22.02 cal	
	8:50:00	18.82	22.05 cal	
	8:51:00	14.28	21.72	Ambient air in box truck
	8:52:00	0.02	20.82	Ambient air in box truck
	8:53:00	0.02	20.83	Ambient air in box truck
	8:54:00	0.03	20.82	Ambient air in box truck
	0.01.00	0.00		
	8:56:00	0.13	20.76 Test 1	Blue Baghouse Stack
	8:57:00	0.13	20.77 Test 1	Blue Baghouse Stack
	8:58:00	0.13	20.76 Test 1	Blue Baghouse Stack
	8:59:00	0.1	20.82 Test 1	Blue Baghouse Stack
				'DI DIII
	9:01:00	0.09	20.83 Test 1	Blue Baghouse Sweeco
	9:02:00	0.09	20.83 Test 1	Blue Baghouse Sweeco
	9:03:00	0.09	20.84 Test 1	Blue Baghouse Sweeco
	9:05:00	0.24	20.57 Test 1	Blue Baghouse Inlet
	9:06:00	0.24	20.57 Test 1	Blue Baghouse Inlet
	9:07:00	0.23	20.57 Test 1	Blue Baghouse Inlet
	9:08:00	0.23	20.58 Test 1	Blue Baghouse Inlet
	9:11:00	0.11	20.71 Test 1	TPU Baghouse Exhaust
	9:12:00	0.11	20.72 Test 1	TPU Baghouse Exhaust
	9:13:00	0.11	20.72 Test 1	TPU Baghouse Exhaust
	9:14:00	0.1	20.72 Test 1	TPU Baghouse Exhaust
	9			
	9:17:00	0.04	0.1 cal	
	9:18:00	0.09	0.1 cai	
	9:19:00	3.03	5.4 cal	
	9:20:00	9.56	12.05 cai	
	9:21:00	9.99	12.1 cal	
	9:22:00	9.98	12.07 cal	

Appendix F - Field Data Sheets

69 of 95

Isokinetic Sampling Cover Sheet Test Engineer: ଅଧି ୬ Test Technician: ର ନ

	Project Number: M154405 Plant Name: 200 Kfw D or Diameter: Company Co
Plant Information	Date: 16/7/15 Client Name: Rehy 4 Sovice Condition: Noth:
	Run Number: キー Test Location: Test Location: Test Location: Circular or Rectangular Flue Area: Nivole Port Type: Misole


	Train Type: Assure Constitute Number/Weight: RRR-I Thimble Number/Weight: RRR-I Sak Check: RR R-I Check: RR-I Chec
Meter and Probe Data	Meter Y Value: / ot 6 AH Value: Pitot Coefficient: 5 4 Train Type: Nozzle Diameter: 494 Filter Numb Probe Liner: 6655 Thimble Nu 2 10 "Hg Post-Test Nozzle Leak Check:
	Meter ID: (IM) 5 Pitot ID:

Traverse Data	Points/Port: Min/Point: 120 Total Test Time: 120 Sample Plane: Hortzontal or Vertical
	Ports Sampled:

Avg. © O2%: Avg. Zo.1 Avg. Static Pressure: Avg. Zo.1 Avg. So.2 Servomex Serial #: Weight: Zoc4 Final Imp. Volume or Weight: Servomex Serial #:			Stack Parameters
N: 516 57 Servomey Serial #: 4\cdot Final Imp. Volume or Weight: 2826.4 Imp. Volume or Weigh	Barometric Pressure:	99.39	
N: <u>Cl の、</u> Servomex Serial #: サバー Final Imp. Volume or Weight: <u>2の2の</u> Imp. Volume or Veright Gallon Weight Gallon	/	/ Avg. ©	/ /Avg. 2°.1 Determ
	Imp and/or silica balance	زا	Servomex Serial #:
	Initial Imp. Volume or We	eight: 1 80 1	Final Imp. Volume or Weight: 2520. Imp. Volume or Weight Gain: 15.3
Linal Sinca Weight.	Initial Silica Weight:	751.2	Final Silica Weight: スプラフラ Silica Weight Gain: 74.7

しないが	
Silica Weight:	

Post-Test Nozzle Verification:

3/2/2015

Rev. 1.0

Comments:

DS-005 M5 Isokinetic Field Data Sheet

Rev. 2.0

Isokinetic Sampling Field Data Sheet

BOH IVON Project Number: Client: Plant:

Y OCKFOID

Test Location: Test Method: Date:

Tol

414

SPC SPC Test Tech: οę <u>_</u>

**	320	
Test Number:	Operator:	Page Number:
υ ^r	INIET	

							4:		100	9								_			_	_					 _
Impinger Outlet Well Temp. °F	3	Ses	70	9	<u>ح</u> ال	2.0	56	L'S	26	ر. ماي	25	57	و	3	3	3	Z,	67	હ	3	0	(20)	CS	(70	د		
Filter Temp. °F	050	254	7521	253	253	252	254	255	754	250	Sloo	152	252	2.58	181	223	255	254	×	252	255	261	220	283	151		
Probe Temp. °F	೦೫೦	260	170	257	400	260	28	250	255	25.3	258	250	260	260	2	202	254	Theo	265	258	25.7	151	253	23.5	260		
Pump Vacuum, " Hg	M	l L	V	5	\$	S	رما	7	7	عر	7	1	8	c~	15	15	20	20	n	22	2,7,	Z	11	22	n		
Meter Temp Outlet,	(20)	10	6	9	90)	(0.00)	67	89	65	٦٥	70	17	11	13	4	1	7	7	4	72	7	12	12	11	11		
Meter Temp Inlet, °F	(06.	و	80)	9	11,	11.	73	72	26	11	۲	76	3	715	hL	75	٨ <u>L</u>	13	M	7	ηĹ	7	7-1	٦٠	٣		
Stack Temp,	377	385	00%	552	372	36%	814	232	265	500	476	22	Sgo	5003	ash	34	282	301	349	34	325	147	ट्राध्य	9 55	009	.	_
Theoretical Meter Volume, (Vm) ft³, total	MARAA			:													(41.									
Theoretical Meter Volume, (Vm) ft³, per															-												
Meter Rate, Cubic Feet/																											
Square Root, ∧P	ı				_							ļ.															
Meter Volume (Vm) ft³, Actual	03.4 60	7.18	10 usc		784	26.818	74.634	27.419	110 07	23 896	141 CZ	200	13.80	47.101	S5 40	(S)	Slo. 851	(a). (b)		900	70.40%	707 hL	78.106	91. 60s	185 395		191.9351
Orifice Setting	734																					-		or committee			
(d ×)	C																		!								
Ë	27.00			282	Orto	2847	280	286	0000	8	7	25	2 0	37.30	Ac. 7.	\$ 25	\$ \$	5	02 50	25	000	X	5.0	210	10.70		
154005C		-	-		_	_	-	_ _		-	<u> </u>		-		_	-	70 . Pai		_	-		e e e e e e e e e e e e e e e e e e e	90%	490			

	IMPINGER WEIGHT SHEET
PLANT: BEW	
UNIT NO: TPU	
LOCATION: The	
DATE: 10/7	
TEST NO:	(D)
метнор: 5/29	
WEIGHED/MEASURED BY:	<u>P</u>
BALANCE ID: 510-37	

	FINAL WEIGHT	INITIAL WEIGHT	IMPINGER	IMPINGER
Circle One:	MLS / GRAMS	MLS / GRAMS	GAIN	CONTENTS
IMPINGER 1	693,7	7050		
IMPINGER 2	676.6	656,9		
IMPINGER 3	650.1	642.6		
IMPINGER 4	775.9	751.2		
IMPINGER 5				
MPINGER 6				
IMPINGER 7				
IMPINGER 8		B I		

IMPINGERS	JOJO 14	JODY S	15,9 TOTAL IMPINGER GAIN
SILICA	FINAL TOTAL	INITIAL TOTAL	24,7 TOTAL SILICA GAIN

					gH"	H ₂ O
		293	nt: 8847	sight:	0 22	0000
	∆H Value: 1 7-57/	Train Type:	Filter Number/Weight:	Thimble Number/Weight:	Leak Check:	ak Check:
Meter and Probe Data	1.0/6	75.	høh	Oil sect	Pöst-Test Nozzle Leak Check:	Post-Test Pitot Leak Check:
Meter	Meter Y Value:	Pitot Coefficient:	Nozzle Diameter:	Probe Liner:	@ /5/ @	18.6 "H ₂ O
			و		W.	1
	CM 25	\$11	Nozzle Kit ID Techor #6	7	Pre-Test Nozzle Leak Check:	Leak Check:
	Meter ID:	Pitot ID:	Nozzle Kit ID	Probe Length:	Pre-Test Nozz	Pre-Test Pitot Leak Check:

Traverse Data Ports Sampled: // O Points/Port: // O Alin/Point: // O Total Points: // O Sample Plane: Hortzonial or Vertical
--

	,
k Parameters	٧,
Stack F	Static Pressure:
	29.39
	Barometric Pressure:

Determined by: Method 3 or Method 3A Final Imp. Volume or Weight: 2013,4 Imp. Volume or Weight Gain: こくられたろ Silica Weight Gain: 201 Servomex Serial #: /Avg. Final Silica Weight: 02%: 210-Imp and/or silica balance Model and S/N Avg. 1000 Initial Imp. Volume or Weight: nitial Silica Weight: CO₂ %:

Comments:

Post-Test Nozzle Verification:

Rev. 1.0

3/2/2015

DS-005 M5 Isokinetic Field Data Sheet

Rev. 2.0

Isokinetic Sampling Field Data Sheet

Project Number: Client: Plant:

POCK GAR

10/2/2015 リスー 2 Test Location: Test Method:

Date:

Page Number: Test Number: Operator:

Test Tech: of DRS

Impinger Outlet Well Temp. °F			į,									_		3,6				-					اد	18.00			
	17	Sy.	25	To	\$ A	S	ž	5	7	S	6	1	-	28	8	QQ.	ડ	3	-	3	3	3	3	2.		\downarrow	
Filter Temp. °F	257	2	253	220	22	257	252	252	25°C	151	22,	200	556	~ ~	152	127	2600	466	32	134	151	157	153	954			
Probe Temp. °F	265	260	253	વ્કર	95%	121	256	250	255	610	260	200	257	255	255	260	261	25%	Z.	12.	<i>4</i> Sr	S	F	SS			
Pump Vacuum, " Hg	5	80	6	10	Ş	3	20	5.6	15	15	2	15	15	15	16	و	و	٥	٩	و	3	9	5	4			
0	11	72	ΣL	hl	Z	76	26	-16	7,0	7.	u	12	18	, 8 ,	18	6/3	79	ዾ	6 F	×0%	200	S S	9	80			
Meter Temp Inlet, °F	73	78	78	77	80	08	<u>~</u>	Š	~	20	25	48	hs	38	\$8	8	20	%	<u>ک</u>	5-	200	2.	30 30	95			
Stack Temp,	513	386	£Σ	3	328	318	202	30	300	334	00/1	34.2 34.2	532	110	Sos	410	12	ZIh	122	342.	346	05%	7	270			
Theoretical Meter Volume, (Vm) ft³,																											
Theoretical Meter Volume, (Vm) ft³, per																											
Meter Rate, Cubic Feet/																			F								
Square Root, ∆P															1.4												
Meter Volume (V _m) ft³, Actual	91.437	95.W	20.00	101.799	010, 90/	109. 760	13 510		170.960	Du. 710	ha ubo	שט מגע	125 SXC	179.796	144,573	147, 423	151,079	151.518	AU 257	810, 29	16C.708	169,577	172.30	176 4263	\$0.05°		
Orifice Setting (△H)	1.73	\vdash					,														-			>			
(A Ø																											
Time Time	Tinc	101	12	1100	100	1. Ch.	77	1.60	3	3			2	CIA	31.6	1, 12	21. u	. E.	78.2	ch.r.	, E	2	7	13 (2)	13.0%		
‡ ‡ 5	1						-	~		-	-	-		- 3	-			_					****			era.	

IMPINGER WEIGHT SHEET
PLANT: Behr Iron & Metal
UNIT NO: TPU
LOCATION: exhaust
DATE: 10/7/15
TEST NO: 2
METHOD: 5/29
WEIGHED/MEASURED BY: MEP
BALANCE ID: 510-37

	FINAL WEIGHT	INITIAL WEIGHT	IMPINGER	IMPINGER
Circle One:	MLS / GRAMS	MLS / GRAMS	GAIN	CONTENTS
IMPINGER 1	692.2	696.1		
IMPINGER 2	763.4	746.7		
IMPINGER 3	438.0	631.5		
IMPINGER 4	813.7	791.6		
IMPINGER 5				
IMPINGER 6				
IMPINGER 7				
IMPINGER 8				

IMPINGERS	ZS93.6	20743 INITIAL TOTAL	19.3 TOTAL IMPINGER GAIN
SILICA .	FIÑAL TOTAL	INITIAL TOTAL	ZZ.

Isokinetic Sampling Cover Sheet Test Engineer: "宮紀久 Test Technician: S記し

	Project Number: ANSWOOT	Plant Name: 200 k Care D	or Diameter:	Downstream Diameters: > 2	Port Diameter:	
Plant Information	Date: (0/7/15	Client Name: Rem Park	Length: Width:	ä	Port Length:	Source Condition:
	# 2	TEN INCET	Officular or Rectangular	1.767	Nicole	200
	Run Number:	Test Location:	Duct Shape:	Flue Area:	Port Type:	Test Method:

			2	leter a	Meter and Probe Data			•
Meter ID:	S NO		Meter Y Value:		9000	∆H Value:	1.751	
Pitot ID:	\$11		Pitot Coefficient:	ent:	hr	Train Type:	ANDERSON	
Vozzle Kit ID	Tetion #6		Nozzle Diameter:	eter:	ナルカ・	Filter Number/Weight:	eight: 55%	
Probe Length:	200		Probe Liner:	'	554/6	Thimble Number/Weight:	Weight:	
Pre-Test Nozzle Leak Check:	Leak Check:	a	8	» EH.	Post-Test Nozzle L	eak Check:	6000	H ₂
Pre-Test Pitot Leak Check:	eak Check:	2	0	T,	"H2O Post-Test Pitot Leak Check:	k Check:	18/0	Ť,

	Traverse Data	
Ports Sampled:	Points/Port:	Min/Point: /20
Total Points:	Total Test Time: 120	Sample Plane: Horizontal or Vertical

	C	O Determined by: Method 3 or Method 3A	2 101
S.		Avg. 2	•
Parameter	15.	/	•
Stack	ressure:	_ /	
	Static Pr	02%:	1
		0	
	. 34	/ Avg.	
	2	1	
	Pressure:	1	
	Barometric	CO ₂ %:	-
	Stack Parameters	etei	Stack Parameters essure: 5 / / /Av

/ /Avg. $2O$ Determined by: Meth	Servomex Serial #: 🕒 14400 39	Final Imp. Volume or Weight: 2031, 2 Imp. Volume or Weight Gain;	/eight: こころ Silica Weight Gain: こころ
02%:	くでつい	Final Imp. Vc	Final Silica Weight:
.	ا خ	6	
/ Avg	lel and S/I	2000	つま
/ / Avg	ance Model and S/N	or Weight: 2000	つまつ
/ / Avg	Imp and/or silica balance Model and S/N:	nitial Imp. Volume or Weight: 2000	nitial Silica Weight:

Comments:

Post-Test Nozzle Verification:

3/2/2015

Rev. 1.0

Rev. 2.0

Isokinetic Sampling Field Data Sheet

42 Test Location: Test Method: Date: ROCK PORT Project Number: Client: Plant:

Operator:

Impinger Outlet Well Temp. °F		. 5.	5.5	لم	7		-	2	7	2	0	30	-		Bre's	e de la composition della composition della comp	No.	7	7	فرم		2		V			
	L	14	.2	57	55	C.	Ŋ	6	r	Ž	3	2	ال,	0	2	8	2	£	2	ê	S	65	2	9		_	
Filter Temp. °F	为57	1,5%		たいて	250	じて	z ñ	15%	280	SE	3	Š	25.5	2	25.2	252	250	25.	23	ž	స	ميرا	R.SI	250			
Probe Temp. °F	S. S.	252	Lich	of the same	250	250	20	27	ර්ත්	250	251	252	200	356	050	25%	3	Z	2	40	ise	152	ગરા	250			
Pump Vacuum, " Hg	L	72	\$	5	2	Q	(0)	(0	(0	0/	15	(5	77	17	×)	28	\$	3	50	10	Jo of	2.6	90	20			
Meter Temp Outlet,	66	00	S S	80	28	<u>~</u>	18	18	25	- POG	43	\$3	28	20	83	83	83	20 13	~	ž	43	43	ક્રે	82			
Meter Temp Inlet, °F	08	48	3	و 80	36	9	26	48	88	A.	ପ୍ର	98	4-1	رد د	58	26	\$	78	7	<u>چ</u>	ત્ત	₩.	₹	43			
Stack Temp,	875	188	763	385	358	7184	772	467	<40	7	421	415	750	130	750	2,500	682	71	1468	N.	2005	600	418	35.8			
Theoretical Meter Volume, (V _m) ft³, total															:												
Theoretical Meter Volume, (Vm) ft³, per		i																									
Meter Rate, Cubic Feet/ Min.																			Ю								
Square Root,										_				_									/_				
Meter Volume (Vm) ft³, Actual	87.430	081.160	980 116	98.757		106.37	110.027	113.782	177.35T	17.316	125.066	986.821	132.836	136.48V	140,336	144.113	47.958	151.624	155,6001	159.359	163.20v	3	170 C.19	SH . H.	118.634)
Orifice Setting (△H)																								3			
(o ⊅)	1.730																			2							
E E	348	7,7	1500	1465	2	2 12	2	16.73	14 73	14.33	25.00	18243	3	<i>S S S S S S S S S S</i>	2	6	20	20	200	27.73	27, 34	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1. 5. 19	54 5)	ر ان مراد ا		
Port.		_			Trouble.	_			_	-	** **				-		escionic.			-	S.man.	- AllCopin	_				

IMPINGER WEIGHT SHEET

PLANT: Beh
UNIT NO: TPU Baghouse
LOCATION: Enlet
DATE: 10/7/15
DATE: 101/113
TEST NO: 3
METHOD: 5/29
WEIGHED/MEASURED BY:
BALANCE ID: 510-37

	FINAL WEIGHT	INITIAL WEIGHT	IMPINGER	IMPINGER
Circle One:	MLS / GRAMS	MLS / GRAMS	GAIN	CONTENTS
IMPINGER 1	706.8	706.3		
IMPINGER 2	674.4	649.7		
IMPINGER 3	650.0	644.3		
IMPINGER 4	777,5	754.7		
IMPINGER 5				
IMPINGER 6				
IMPINGER 7				
IMPINGER 8				

IMPINGERS	2000,3	2036,2	
•	FINAL TOTAL	INITIAL TOTAL	TOTAL IMPINGER GAIN
SILICA			22.8
CILIOA	FINAL TOTAL	INITIAL TOTAL	TOTAL SILICA GAIN

Appendix G - Calibration Data

MOSTARDI PLATT

Procedures for Method 5 and Flow Calibration

Nozzles

The nozzles are measured according to Method 5, Section 10.1

Dry Gas Meters

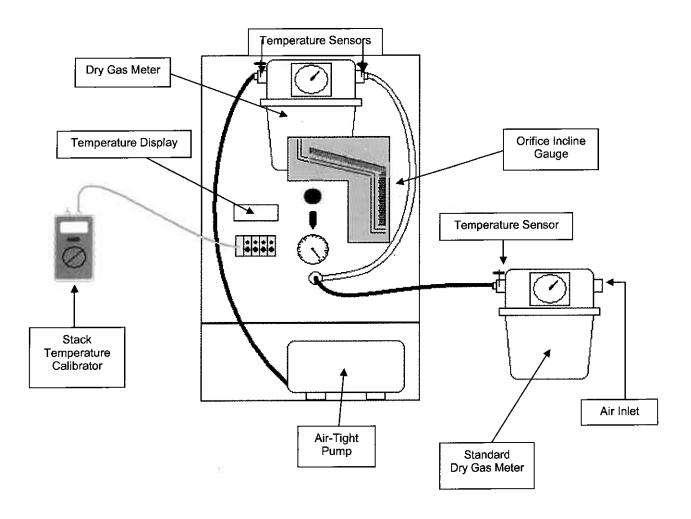
The test meters are calibrated according to Method 5, Section 10.3 and "Procedures for Calibrating and Using Dry Gas Volume Meters as Calibration Standards" by P.R. Westlin and R.T. Shigehara, March 10, 1978.

Analytical Balance

The accuracy of the analytical balance is checked with Class S, Stainless Steel Type 303 weights manufactured by F. Hopken and Son, Jersey City, New Jersey.

Temperature Sensing Devices

The potentiometer and thermocouples are calibrated utilizing a NBS traceable millivolt source.


Pitot Tubes

The pitot tubes utilized during this test program are manufactured according to the specification described and illustrated in the Code of Federal Regulations, Title 40, Part 60, Appendix A, Methods 1 and 2. The pitot tubes comply with the alignment specifications in Method 2, Section 10.1; and the pitot tube assemblies are in compliance with specifications in the same section.

80 of 95

D-83

Dry Gas Meter/Control Module Calibration Diagram

Dry Gas Meter Calibration Data

14159239 0.9979 Standard Meter No. Standard Meter (Y) Dry Gas Meter No.

Barometric Pressure: Calibrated By:

September 16, 2015 AOT 29.21

	Orifice	Standard Meter	Dry Gas Meter	Standard Meter	Dry Gas Meter	Dry Gas Meter	Dry Gas Meter				
	Setting in H ₂ O	Gas Volume	Gas Volume	Тетр. F°	Inlet Temp. F°	Outlet Temp. F°	Avg. Temp. F°	Time	Time		
Run Number	Chg (H)	Vr	ρΛ	tr	tdi	tdo	tσ	Min	Sec	>	Chg (H)
Final		9.489	85.657	71	74	74			_		
Initial		4.255	80.502	11	74	74					
ence	1 0.20	5.234	5.155	71	74	74	74	20	25	1.018	1.760
Final		15.632	91.727	72	92	75					
Initial		9.570	85.753	72	73	74					
ence	2 0.50	6.062	5.974	72	75	75	75	14	58	1.016	1.767
Final		26.475	102.400	72	29	22					
Initial		15.720	91.805	72	75	75					
ence	3 0.70	10.755	10.595	72	22	2/2	76	22	40	1.019	1.797
Final		31.921	7777	73	282	77					
Initial		26.611	2.530	72	78	92					
Difference	4 0.90	5.310	5.247	73	78	77	77	6	45	1.017	1.754
Final		37.281	13.103	73	79	77					
Initial		32.137	8.000	73	77	92					
ence	5 1.20	5.144	5.103	73	28	77	77	8	12	1.011	1.766
Final		104.135	80.387	71	75	74	<u> </u>				
Initial		98.952	75.280	71	73	74					
Difference	6 2.00	5.183	5.107	7.1	74	74	74	9	13	1.013	1.664
											١

1.751

1.016

Stack Temperature Sensor Calibration

Meter Box #:

CM25

Name:

EWK

Ambient Temperature:

75

Date:

September 16, 2015

Calibrator Model #:

CL23A

Serial #:

T-249465

Date Of Certification: December 26, 2014

Primary Standards Directly Traceable National Institute of Standards and Technology (NIST)

Reference Source	Test Thermometer	Temperature
Temperature (° F)	Temperature (° F)	Difference %
0	-2	0.4
250	248	0.3
600	597	0.3
1200	1200	0.0

(Ref. Temp., ${}^{\circ}F + 460$) - (Test Therm. Temp., ${}^{\circ}F + 460$) * 100 <= 1.5 % Ref. Temp., °F + 460

Dry Gas Meter Calibration Data

4319699 1.0053 Standard Meter No. Standard Meter (Y) Dry Gas Meter No.

October 6, 2010	KAG	29.35

Barometric Pressure: Calibrated By:

	Orifice	Standard Meter	Dry Gas Meter	Standard Meter	Dry Gas Meter	Dry Gas Meter	Dry Gas Meter				
	Setting in H ₂ O	Gas Volume	Gas Volume	Temp. F°	Inlet Temp. F°	Inlet Temp. F° Outlet Temp. F°	Avg. Temp. F°	Time	Time		
Run Number	Chg (H)	V	ρΛ	tr	tdi	tdo	td	Min	Sec	,	Chg (H)
									٠		
Final		53.135	89.753	99	29	99					
Initial		47.893	84.558	65	9	99					
Difference 1	0.20	5.242	5.195	99	99	99	99	20	0	1.015	1.640
Final		59.025	95.575	99	02	29					
Initial		53.306	116.68	65	.29	99					
Difference 2	0.50	5.719	5.664	99	69	29	89	14	11	1.018	1.729
Final		64.282	900.878	99	1.1	89					
Initial		59.183	895.737	99	69	29					
Difference 3	0.70	5.099	5.141	99	20	89	69	10	42	1.001	1.732
Final		69.828	6.311	29	72	69					
Initial		64.575	1.061	99	02	69					
Difference 4	0.90	5.283	5.250	29	71	69	70	6	45	1.016	1.722
Final		76.584	12.986	29	74	02					
Initial		70.057	6.514	29	7.1	69					
Difference 5	5 1.20	6.527	6.472	67	73	20	71	10	35	1.018	1.772
Final		47.694	84.382	65	99	63					
Initial		42.391	79.182	65	62	62				,	
Difference 6	3 2.00	5.303	5.200	. 65	64	69	63	9	35	1.016	1.745

1.723

Stack Temperature Sensor Calibration

Meter Box #:

CM25

Name:

KAG

Ambient Temperature :

68

Date:

October 8, 2015

Calibrator Model # :

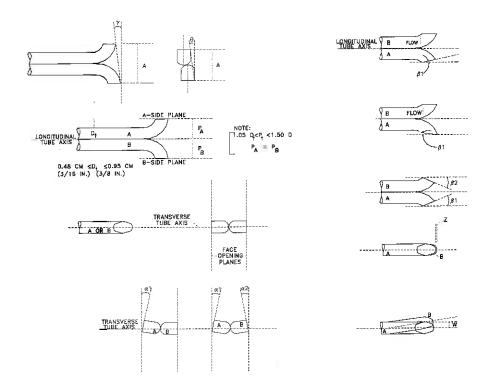
CL23A

Serial #:

T-249465

Date Of Certification: December 26, 2015

Primary Standards Directly Traceable National Institute of Standards and Technology (NIST)


Reference Source Temperature (° F)	Test Thermometer Temperature (° F)	Temperature Difference %
0	-1	0.2
250	248	0.3
600	597	0.3
1200	1201	0.1

(Ref. Temp., °F + 460) - (Test Therm. Temp., °F + 460) * $100 \le 1.5$ % Ref. Temp., °F + 460

S TYPE PITOT TUBE INSPECTION WORKSHEET

 Pitot Tube No:
 118
 Date:
 8/27/2015
 Inspector's Name:

Type of Probe: (circle one) M2 M5 M17 Probe Length: 3 ft.

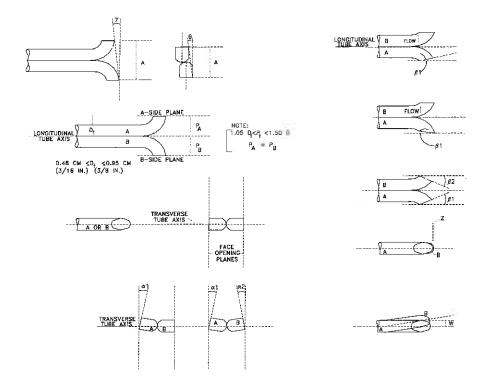
Pitot tube assembly level? _____ yes _____no

Pitot tube openings damaged? ______yes (explain below) _____x___

 $a_1 = 0$ ° (<10°), $a_2 = 0.5$ ° (<10°) $z = A \sin g = 0.025$ (in.); (<0.125 in.)

 $b_1 = 1.5^{\circ} (<5^{\circ}), \quad b_2 = 0.5^{\circ} (<5^{\circ}) \quad w = A \sin q = 0.025 (in.); (<0.03125 in.)$

 $_{\gamma}$ = 1.5 °, θ = 1.5 °, A = 0.950 (in.) P_{A} = 0.475 (in.), P_{B} = 0.475 (in.), D_{t} = 0.375 (in.)


Calibration required? _____ yes ___x __no

KOJ

S TYPE PITOT TUBE INSPECTION WORKSHEET

 Pitot Tube No:
 118
 Date:
 10/9/2015
 Inspector's Name:
 JDV1

Type of Probe: (circle one) M2 M5 M17 Probe Length: 3 ft.

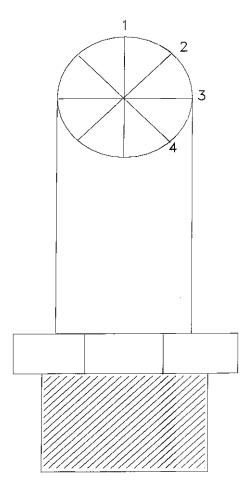
Pitot tube assembly level? <u>x</u> yes _____no

Pitot tube openings damaged? ______yes (explain below) ____x __no

 $a_1 = 0.5$ ° (<10°), $a_2 = 1$ ° (<10°) $z = A \sin g = 0.025$ (in.); (<0.125 in.)

 $b_1 = 2^{\circ} (<5^{\circ}), b_2 = 0^{\circ} (<5^{\circ}) w = A \sin q = 0.025 (in.); (<0.03125 in.)$

 $_{\gamma}$ = 1.5 °, $_{\theta}$ = 1.5 °, $_{A}$ = 0.964 (in.) $_{A}$ = 0.482 (in.), $_{B}$ = 0.482 (in.), $_{D_{t}}$ = 0.375 (in.)

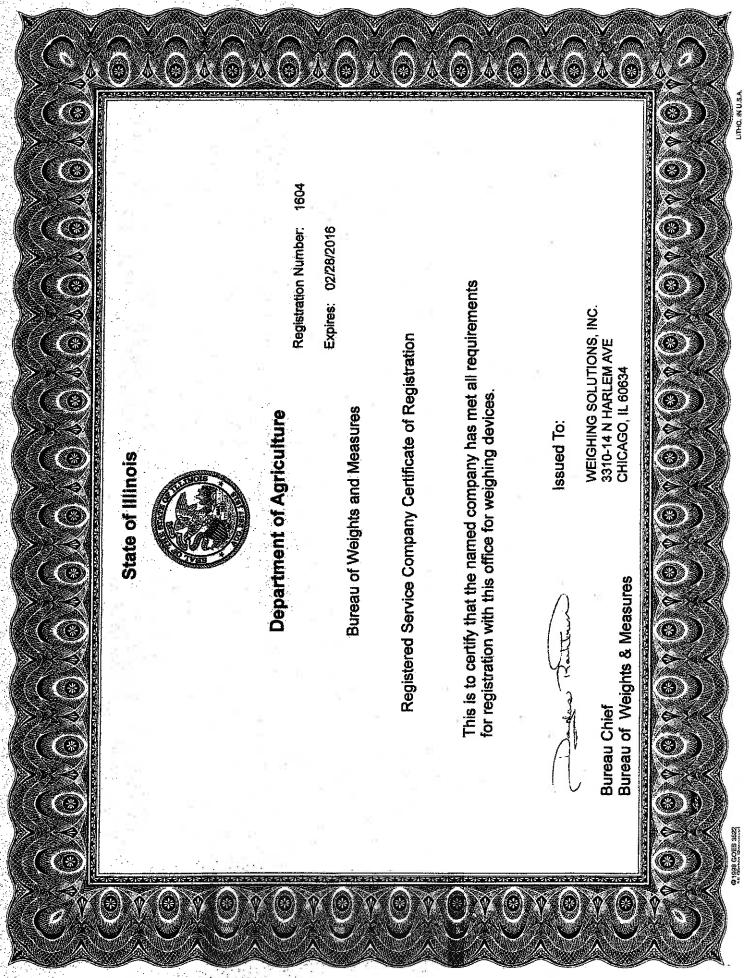

Calibration required? _____yes ___x __ no

Nozzle Calibration

Date: 8/13/2015

Nozzle ID No.: T-24

Analyst: SD


Average 0.494

WEIGHING SOLUTIONS INC.

SALES-SERVICE-RENTALS 3310-14 N. HARLEM AVENUE CHICAGO, IL 60634

PHONE 773-836-2800 **FAX** 773-836-2891

		CALIBRATION KEPU	
Company Name 105 7A	edi Platt	<u>. </u>	Model # E 0640
Date OCTOBER	14,2015		Serial/ID # 60451121051238
Location LAB			Manufacturer Otlaus
Weight Set # E =			Manufacturer Otlaus Tolerance ± 0.05 %
5			
Capacity 62 s		Before Cal.:	After Cal.:
Readability O./ 4	9		
Weight # 1		0,000/9	0.000/9
Weight #2	ĵ	1,60009	1.0000 9
Weight #3		10.00009	10,00605
Weight #4209		20,00029	20.00005
Weight # 5		50.00059	50. 00009
	Accept	Reject	
Linearity			
Cornerload	<u> </u>	***************************************	
Repeatability			
Tysteresis			
Comments Cleaned and	adjusted calibra	ation to N.I.S.T. specification	ins.
		\cap	
		V. A.	SATE OF ILLINO
		Technician	/ WEIGHING \
		623	SOLUTIONS
57	ñ.	State Of IL Registration	NO. 1604 CONTRED SCALE AS
Project No. M154005C		pure or in vestion and	O'RRED SCALE PO
Rotary Dryer Discharge		89 of 95	© Mostardi Platt

				Ambient Temperature	Relative	Barometric	Calibration		Calibration		Calibration	
Pre/Post	Date	Time	Analyst	degrees F	% %	inches Hg	50.0000g	# Fro	Standard	% !!	Standard	» ,
Pre	10/5/2015	8:00 AM	JLS	69	34.0	29.50	49 9997 n	5 6	2.0000		0.5000g	Error
Post	10/5/2015	3:30 PM	STI	72	33.0	29.50	49 9997 9	3 6	4.3939 g	0.00	0.5001 g	-0.02
Pre	10/6/2015	7:30 AM	JLS	69	36.0	29.47	40,000 0	300	5.0000 g	0.00	0.5000 g	000
Post	10/6/2015	3:00 PM	JLS	73	33.0	20.4	49.9990 g	20.00	5.0000 g	0.00	0.5003 g	-0.06
Pre	10/7/2015				3	29.30	49.8882.0	0.00	5.0000 g	0.00	0.5000 g	0.00
Post	10/7/2015								400			
Pre	10/8/2015											
Post	10/8/2015										13	I
Pre	10/9/2015											
Post	10/9/2015								3			i
Pre	10/12/2015	7:00 AM	JMG	70	28.0	29.08	49 9996 n	000	5 0000 3	5	- 000	
Post	10/12/2015	3:00 PM	JMG	20	28.0	29.00	49.9995 g	0.00	5,0000 a	00.00	0.5000 g	0.00
Pre	10/13/2015	8:00 AM	ЭМС	70	25.0	29.00	49.9998 g	0.00	5.0000 a	000	0.5000 g	3 6
Post	10/13/2015	3:00 PM	JMG	70	25.0	29.00	49.9998 g	0.00	5.0000 a	000	0.5000 0	8 6
Pre	10/14/2015	8:00 AM	JMG	29	26.0	29.26	49.9998 g	0.00	5.0000 g	0.00	0.5001 0	-0.02
Post	10/14/2015	2:30 PM	JLS	20	24.0	29.35	49.9993 g	0.00	4.9999 q	0.00	0.5003.0	900
e l	10/15/2015	7:00 AM	JMG	69	25.0	29.32	49.9998 g	0.00	4.9999 g	00.0	0.5001 a	-0.02
Post	10/15/2015	1:30 PM	JMG	69	25.0	29.32	49.9998 g	00.0	4.9999 g	0.00	0.5001 0	-0.02
e L	10/16/2015	8:00 AM	JLS	99	24.0	29.53	49.9994 g	0.00	5.0000 g	0.00	0.5004 a	80.0
Post	10/16/2015	2:30 PM	JLS	89	24.0	29.62	49.9991 g	0.00	5.0001 g	0.00	0.5000 g	0.00
-	1000001			-)	57
Post	10/19/2015						31		00			I
Pre	10/20/2015	8:00 AM	JMG	02	23.0	20.44	200004	4	0000			
Post	10/20/2015	9:00 AM	JMG	02	23.0	29.41	50 0001 g	3 6	3.0000 g	0.00	0.5002 g	-0.04
Pre	10/21/2015	9:00 AM	JMG	69	26.0	29 44	49 9999 0	8 6	3.0000 g	0.00	0.500c.0	-0.04 0.04
Post	10/21/2015	10:00 AM	JMG	02	25.0	29.44	49.9999 n	800	5.0002 g	3 8	0.5002 g	40.04
Pre	10/22/2015	2:00 PM	JMG	89	24.0	29.50	49.9999 n	000	5,0001 g	3 6	0.3002 g	500
Post	10/22/2015	2:15 PM	JMG	89	24.0	29.50	49.9999 q	0.00	5.0001 8	3 6	0.5002 g	40.0
Pre	10/23/2015	8:00 AM	JMG	89	27.0	29.56	49.9999 g	0.00	5.0001 g	00.0	0.5000 0	1000
Post	10/23/2015	3:00 PM	JMG	89	28.0	29.56	49.9999 g	0.00	5.0001 g	0.00	0.5000 a	800
									,			,

Balance IL OHAUS Model Explorer GO451121051238

Appendix H - Gas Cylinder Certifications

Airgas Specialty Gases

12722 South Wentworth Avenue Chicago, IL 60628

(773) 785-3000 Fax: (773) 785-1928

www.airgas.com

CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol

Part Number: Cylinder Number: E03NI59E15A3452

CC55028

Laboratory:

ASG - Chicago - IL

PGVP Number: Gas Code:

B12013

CO2,O2

Reference Number:

54-124361680-5

Cylinder Volume:

159.0 CF 2015 PSIG

Cylinder Pressure: Valve Outlet:

590

Feb 25, 2013 Certification Date:

Expiration Date: Feb 25, 2021

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted.

> Do Not Use This Cylinder below 100 psig. i.e. 0.7 megapascals ANALYTICAL RESULTS

Component	, , , , , , , , , , , , , , , , , , ,	Requested Concentration	ANALYTICAL I Actual Concentration	Protocol Method	Total Relative Uncertainty	Assay Dates
CARBON DIC	XIDE	19.00 %	18.63 %	G1	+/- 1.4% NIST Traceab	le 02/25/2013
OXYGEN		22.00 %	21.96 %	G1	+/- 0.7% NIST Traceab	le 02/25/2013
NITROGEN		Balance	· · · · · · · · · · · · · · · · · · ·			
Туре	Lot ID	Cylinder No	ALIBRATION ST	[ANDARD	S Uncertainty	Expiration Date
NTRM/CO2	06120405	CC184974	19.66 % CARBON DIOX	IDE/NITROGEN	+/- 0.5%	May 01, 2016
NTRM/O2	06120202	CC195927	20.9 % OXYGEN/NITRO	GEN	+/- 0.4%	Dec 01, 2015
Instrument	Make/Model		ANALYTICAL EQ Analytical Principle	-	fultipoint Calibration	

CO2-1 HORIBA VIA-510 V1E3H7P5 O2-1 HORIBA MPA-510 3VUYL9NR NOIR Paramagnetic Jan 28, 2013 Feb 20, 2013

Triad Data Available Upon

Request

Notes:

Approved for Release

Page 1 of 54-124361680-5

CERTIFICATE OF ANALYSIS

Grade of Product: EPA Protocol

Airgas Specialty Gases

12722 South Wentworth Avenue

Chicago, IL 60628

(773) 785-3000 Fax: (773) 785-1928

Airgas.com

Part Number:

E03NI78E15A1066

CC89223

Reference Number: Cylinder Volume:

54-124500021-7

Cylinder Number: Laboratory:

ASG - Chicago - IL

e: 15

151.1 CF 2015 PSIG

PGVP Number:

B12015

Cylinder Pressure:

590

Gas Code: CO2,O2,BALN

Valve Outlet: Certification Date:

Jun 23, 2015

Expiration Date: Jun 23, 2023

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical Interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted.

Do Not Use This Cylinder below 100 psig, i.e. 0.7 megapascals.

			ANALYTICA	L RESULTS		•
Compon	ent	Requested Concentration	Actual Concentration	Protocol Method	Total Relative Uncertainty	Assay Dates
CARBON OXYGEN NITROGE		10.00 % 12.00 % Balance	9.926 % 11.98 %	G1 G1	+/- 1.0% NIST Traceable +/- 1.0% NIST Traceable	
Туре	Lot ID	Cylinder No	CALIBRATION Concentration	STANDARDS	S Uncertainty	Expiration Date
NTRM NTRM	06120402 06120204	CC184369 CC195893	19.66 % CARBON DIOXIDE/NITROGEN 20.90 % OXYGEN/NITROGEN		+/- 0.5% +/- 0.4%	May 01, 2016 Dec 01, 2015
Instrume	nt/Make/Mod	el	ANALYTICAL Analytical Prin	,		oration
	RIBA VIA-510 \ IBA MPA-510 3	** *	NDIR Paramagnetic		Jun 12, 2015 Jun 16, 2015	

Triad Data Available Upon Request

Approved for Release

Alan Hurain

Page 1 of 54-124500021-7

END OF THE REPORT

Emission Test Report Particulate and Metals Emissions

Behr Iron & Metal - Rockford, Illinois Site ID No.: P201030AB

January 19, 2016

APPENDIX E METHOD 29 AUDIT SAMPLE REPORT

This Page Left Blank

October 30, 2015

John Pinion Behr Iron And Metal 1100 Seminary St Rockford, IL 61104

Enclosed is your final report for ERA's Stationary Source Audit Sample (SSAS) Program. Your final report includes an evaluation of all results submitted by your laboratory to ERA.

Data Evaluation Protocols: All analytes in ERA's SSAS Program have been evaluated comparing the reported result to the acceptance limits generated using the criteria contained in the TNI SSAS Table.

For any "Not Acceptable" results, please contact your state regulator for any corrective action requirements.

Thank you for your participation in ERA's SSAS Program. If you have any questions, please contact our Proficiency Testing Department at 1-800-372-0122.

Sincerely,

David Kilhefner Quality Officer

cc: Project File Number 092915O

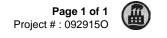
Project #: 0929150

Recipient Type	Report Recipient	Contact	Project ID
Agency	IL-EPA Region 5 (SSAS) 77 W Jackson Blvd AE-17J Chicago, IL 60604 USA	Dakota Prentice prentice.dakota@epa.gov Phone: 312-886-6761	
Facility	Behr Iron And Metal 1100 Seminary St Rockford, IL 61104 USA	John Pinion jpinion@rka-inc.com Phone: 630-393-9000	
Lab	Maxxam Analytics Inc 6740 Campobello Rd Mississauga, ON L5N 2L8 Canada	Clayton Johnson Sr. Project Manager cjohnson@maxxam.ca Phone: (905) 817-5769	
Tester	Mostardi Platt 888 Industrial Drive Elmhurst, IL 60123 USA	Jenna Ghanma jghanma@mp-mail.com Phone: 630-993-2685	Behr M154005

092915O Laboratory Exception Report

Clayton Johnson Sr. Project Manager Maxxam Analytics Inc 6740 Campobello Rd Mississauga, ON L5N 2L8 (905) 817-5769 **EPA ID: ERA Customer Number:**

Not Reported M748564


Evaluation Checks

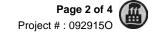
There are no values reported with < where the assigned value was greater than 0.

Not Acceptable Evaluations

There were no Not Acceptable evaluations for this study.

Final Report Results For Laboratory Maxxam Analytics Inc

SSAP Evaluation Report


Project Number: 0929150

ERA Customer Number: M748564

Laboratory Name: Maxxam Analytics Inc

Inorganic Results

0929150 Evaluation Final Complete Report

A Waters Company

Clayton Johnson EPA ID:
Sr. Project Manager ERA Customer Number:
Maxxam Analytics Inc
6740 Campobello Rd


Not Reported M748564

TNI Analyte Code	Analyte	Units	Reported Value	Assigned Value	Acceptance Limits	Performance Evaluation	Method Description	Analysis Date	Analyst Name
SSAP Me	etals on Filter Paper (cat# 1425, lot# 09	2915O) Study Date	s: 09/29/15	- 10/30/15				•	
1005	Antimony	μg/Filter	32.2	31.9	23.9 - 39.9	Acceptable	EPA Method 29 2000	10/28/2015	
1010	Arsenic	μg/Filter	26.4	27.3	20.5 - 34.1	Acceptable	EPA Method 29 2000	10/28/2015	
1015	Barium	μg/Filter	31.4	27.2	20.4 - 34.0	Acceptable	EPA Method 29 2000	10/28/2015	
1020	Beryllium	μg/Filter	12.5	13.6	10.2 - 17.0	Acceptable	EPA Method 29 2000	10/28/2015	
1030	Cadmium	μg/Filter	13.2	13.6	10.9 - 16.3	Acceptable	EPA Method 29 2000	10/28/2015	
1040	Chromium	μg/Filter	21.0	20.4	16.3 - 24.5	Acceptable	EPA Method 29 2000	10/28/2015	
1050	Cobalt	μg/Filter	14.6	13.6	10.2 - 17.0	Acceptable	EPA Method 29 2000	10/28/2015	
1055	Copper	μg/Filter	14.2	13.6	10.2 - 17.0	Acceptable	EPA Method 29 2000	10/28/2015	
1075	Lead	μg/Filter	27.4	27.2	21.8 - 32.6	Acceptable	EPA Method 29 2000	10/28/2015	
1090	Manganese	μg/Filter	14.5	13.6	9.52 - 17.7	Acceptable	EPA Method 29 2000	10/28/2015	
1105	Nickel	μg/Filter	27.1	27.2	19.0 - 35.4	Acceptable	EPA Method 29 2000	10/28/2015	
1140	Selenium	μg/Filter	26.9	27.2	19.0 - 35.4	Acceptable	EPA Method 29 2000	10/28/2015	
1150	Silver	μg/Filter	40.8	40.8	28.6 - 53.0	Acceptable	EPA Method 29 2000	10/28/2015	
1165	Thallium	μg/Filter		40.8	30.6 - 51.0	Not Reported			
1190	Zinc	μg/Filter	29.0	27.2	19.0 - 35.4	Acceptable	EPA Method 29 2000	10/28/2015	

Mississauga, ON L5N 2L8

(905) 817-5769

0929150 Evaluation Final Complete Report

A Waters Company

EPA ID: ERA Customer Number:

10/27/2015

10/27/2015

10/27/2015

10/27/2015

10/27/2015

10/27/2015

10/27/2015

EPA Method 29 2000

EPA Method 29 2000

EPA Method 29 2000

EPA Method 29 2000

EPA Method 29 2000

EPA Method 29 2000

EPA Method 29 2000

Not Reported M748564

		(555)							
TNI Analyte Code	Analyte	Units	Reported Value	Assigned Value	Acceptance Limits	Performance Evaluation	Method Description	Analysis Date	Analyst Name
SSAP Me	etals in Impinger Solution (cat# 1426, l	ot# 092915O) Stud	y Dates: 09/	/ 29/15 - 10/3	30/15				
1005	Antimony	μg/mL	1.78	1.70	1.28 - 2.12	Acceptable	EPA Method 29 2000	10/27/2015	
1010	Arsenic	μg/mL	0.902	0.895	0.671 - 1.12	Acceptable	EPA Method 29 2000	10/27/2015	
1015	Barium	μg/mL	1.10	1.05	0.788 - 1.31	Acceptable	EPA Method 29 2000	10/27/2015	
1020	Beryllium	μg/mL	1.45	1.35	1.01 - 1.69	Acceptable	EPA Method 29 2000	10/27/2015	
1030	Cadmium	μg/mL	1.17	1.12	0.896 - 1.34	Acceptable	EPA Method 29 2000	10/27/2015	
1040	Chromium	μg/mL	2.51	2.42	1.94 - 2.90	Acceptable	EPA Method 29 2000	10/27/2015	
1050	Cobalt	μg/mL	1.96	1.75	1.31 - 2.19	Acceptable	EPA Method 29 2000	10/27/2015	

1.22

0.695

0.326

0.357

1.80

0.818

1.59

1.64

0.915 - 1.52

0.521 - 0.869

0.244 - 0.408

0.286 - 0.428

1.35 - 2.25

0.614 - 1.02

1.19 - 1.99

1.23 - 2.05

Acceptable

Acceptable

Acceptable

Acceptable

Acceptable

Acceptable

Not Reported

Acceptable

Clayton Johnson

(905) 817-5769

Sr. Project Manager

Maxxam Analytics Inc 6740 Campobello Rd Mississauga, ON L5N 2L8

1.29

0.719

0.343

0.372

1.81

0.878

1.74

µg/mL

µg/mL

µg/mL

µg/mL

µg/mL

µg/mL

µg/mL

μg/mL

1055

1075

1090

1105

1140

1150

1165

1190

Copper

Manganese

Lead


Nickel

Silver

Zinc

Thallium

Selenium

This Page Left Blank